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THE INFLUENCE OF VISIBILITY, CLOUD CEILING, FINANCIAL INCENTIVE, AND 
PERSONALITY FACTORS ON GENERAL AVIATION PILOTS’ WILLINGNESS TO 

TAKE OFF INTO MARGINAL WEATHER, PART I: 
THE DATA AND PRELIMINARY CONCLUSIONS

INTRODUCTION

In the 1934 movie Bright Eyes, a six year-old Shir-
ley Temple plays a brave little orphan, ever-cheerful 
and indomitable in the face of fell circumstance. Her 
godfather/pilot, James Dunn, desperately wants to adopt 
the stalwart girl, but lacks the money for legal fees. So 
he accepts a job no other pilot will dare, delivering cargo 
through a hair-raising storm. In the end, love conquers 
adversity, and everyone lives happily ever after.

This movie is far more than fluff. It makes a point 
critical to aviation psychology, namely that people take 
risks that seem to defy logic. They have their reasons; we 
may just not see them right away.

We know that some pilots take risks with weather, 
the question is why. U.S. general aviation (GA) typically 
averages far higher accident and fatality rates than both 
commercial aviation and automotive transport. Both in 
relative and absolute numbers, more people die from 
accidents in GA than in commercial aviation. Yet, GA 
safety research invariably receives less attention than its 
higher-profile commercial aviation counterpart. Figure 
1 illustrates the relative fatality rates. 

In this sample, GA averages a fatality rate 223 times 
higher per-passenger-mile than commercial aviation. Data 
were derived by us from National Transportation Safety 
Board (2002, Tables 10, 6) and U.S. Bureau of Trans-
portation Statistics (2001, Tables 1-31, 2-1). Fatalities 
were simply divided by official estimates of total miles 
flown. NTSB data exclude fatalities due to terrorism and 
include those due to collateral damage (e.g., bystanders 
hit by debris).

What are the factors that contribute to this higher 
fatality rate for GA? A leading candidate is adverse 
weather, technically known as flight into instrument 
meteorological conditions (IMC). Data derived by us 
from National Transportation Safety Board statistics 
(1995-1997) support this assertion, showing IMC im-
plicated in approximately 32% of GA fatalities (Appen-
dix A details the derivation). Many of these inadvertent 
violations happened during flight-into-IMC when pilots 
rated only for visual flight rules (VFR) found themselves 
caught in IMC (Goh & Wiegmann, 2002). 

A number of authors have reviewed and investigated 
external (environmental) and internal (perceptual/
cognitive) factors leading to weather-related decision 
making errors (Adams, Koonce, & Hwoschinsky, 2002; 
Hunter, 2002a,b; O’Hare, 1990; O’Hare & Owen, 1999; 
O’Hare, Chalmers, & Scuffham, 2003; Wiegmann, Goh, 
& O’Hare, 2002). To summarize cogent points:
1)   Weather-related situation risk may escape perceptual 

or cognitive appreciation
a) Perceptual:The physical situation of risk may 

literally not be perceived.
b) Cognitive: It may be physically perceived 

but psychologically underestimated for some 
reason(s).
i) The base rate of risk for that situation may 

be unknown.
ii) Knowledge of weather-related flight rules 

may be inadequate.
iii) The probability of disjunctive events may be 

underestimated (explained below).
iv) The probability of conjunctive events may 

be overestimated (explained below).

2)   Weather risk may be appreciated—and knowledge 
of flight rules adequate—but cognitive or emotional 
factors may overrule apparent good judgment.
a) A pilot may overestimate his or her piloting 

ability.
b) Sunk-cost effect may promote flight continuance 

(explained below).
c) Fractional anticipatory goal response may pro-

mote continuance (explained below).
d) A mental risk/benefit equation may be operating, 

in which case the estimated benefit of continuing 
into IMC may outweigh the estimated risk.
i) Objective risk is the net probability of and 

severity of loss, given all parameters of the 
situation.

ii) Perceived risk is one’s cognitive/affective 
estimate of objective risk.

iii) Benefit may be positive reinforcement (R+) 
or negative reinforcement (R-)1. 
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To illustrate Point 1a, consider the difficulty of deter-
mining ground visibility during fog. In the absence of 
reference objects of known size, there are simply no reliable 
perceptual cues on which to base an accurate visibility 
estimate. Accurate risk assessment fails because of missing 
physical information. In some cases, the information may 
be there, but the cues may simply be missed due to lack 
of knowledge of what they are or inexperience at judging 
them. This kind of situation can often be handled with 
training (Wiggins & O’Hare, 2003).

In Point 1bi, base rate means the statistical likelihood 
of some accident happening under given circumstances 
with an average individual (O’Hare, 1990). For instance, 
how many of us know the average odds of crashing, given 
some complicated flight situation? Often, the only in-
formation we have is very crude, such as “fatalities per 
million miles.” This tells us little about the average risk 
involved with any given kind of weather (Oppe, 1988). 
Because there are so many kinds of situations, it becomes 
nearly impossible to truly know the base rates for every 
one. Therefore, base rate estimation often devolves into 
an educated guess based on inadequate information.

Point 1bii involves inadequate pilot knowledge of 
weather-related flight rules. Rules are the “yardstick” 
defined by knowledgeable authority, by which individuals 
can gauge the risk of their own behavior, even though 
they may never have experienced the catastrophes that 
motivated those rules in the first place. And, if we deeply 
consider the meaning of rules, we realize that good rules 
are actually statements embodying prior knowledge about 
accident base rates. If clear knowledge of those rules is 
missing, so is the yardstick—the accumulated statistical 
knowledge about how risky a given situation is likely to 
be—and risk assessment is reduced to guessing based on 
lack of appropriate knowledge.

Point 1biii refers to a highly common psychological 
bias. In disjunctive risk assessment, we have a bias to un-
derestimate the global chance of something happening at 
least once when a chance process is repeated over and over 
(Kahneman & Tversky, 1982, p. 15). For instance, what 
is the actual chance of crashing at least once, if we fly six 
times, each time having a base rate of 1/30 for the crash 
risk? The answer is 1 – (29/30)6 = .184. Many people 
would estimate it as less probable than that, even when 
given the true base rate. The point is that most of us do 
not understand (much less calculate) true probabilities. 
Instead, we do seem to “guesstimate” odds, particularly 
the odds of repeatedly taking risks without getting caught. 
And, included in this guesstimation is some kind of hu-
man tendency to be somewhat optimistic with regard to 
certain kinds of risk.

Point 1biv refers to a similar bias to overestimate the 
global chance of something happening all the time when 
a chance process is repeated over and over (Kahneman & 
Tversky, 1982, p. 15). For instance, what is the chance 
of always flying successfully, if we fly six times, each time 
having a 1/30 chance of crashing? Notice that this example 
is the logical complement to the previous one. The answer 
is (29/30)6 = .816. Many people would estimate it as more 
probable than that, indicating a bias toward optimism 
with respect to this particular kind of risk.

Point 2 has to do with risk that is appreciated but is 
mentally overridden or overruled for some reason. Shap-
pell and Wiegmann (2003) estimated that GA fatal ac-
cidents are four times more likely to be the result of rule 
violations than are non-fatal accidents. Some of these 
violations are unconscious, due to the factors listed in 
Point 1. The rest are conscious. If one knows the yard-
stick but chooses to ignore it, then we are faced with a 
much different situation, one calling for a very different 
strategy to correct.

One simple reason that people ignore rules may be 2a, 
often called confidence calibration. In other words, how 
well does one’s own confidence in oneself truly match 
what one is capable of doing? The plain fact is that most 
people put more faith in their own abilities and judgments 
than actual performance warrants (Baranski & Petrusic, 
1994). Pilots are no exception (Wilson & Fallshore, 2001). 
Most people tend to idealize their own skill level, for one 
thing. For another, we often tend to think we can put 
forth our best effort at any time, ignoring the fact that 
instantaneous skill is affected by ever-changing factors 
such as physical health, level of sleep or rest, nutrition, 
and so on. Nobody functions 100% effectively 100% 
of the time.

Sunk-cost effect (Point 2b) is the degree of investment 
we have in some situation, literally what we have “sunk 
into it.” The importance of sunk cost has to do with 
prospect theory (Kahneman & Tversky, 1979). Prospect 
theory states that, everything else being equal, certainty 
carries more mental weight than uncertainty. For example, 
if one has ten hours invested in a flight, and encounters 
bad weather ten minutes from destination and decides 
to divert, the risk of crashing in that last ten minutes is 
uncertain—but the loss of getting home, and of all that 
work invested, is 100% certain. The sunk costs are ten 
hours' work plus the positive expectations associated 
with arrival. And, the greater this sunk cost, the more 
likely one may be to press on to the destination. VFR-
into-IMC could be due to sunk-cost effect, although the 
research is divided on this point (Goh, Wiegmann, & 
O’Hare, 2002). 
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A simpler, older proposal, put forth by behavioral 
theory, is Point 2c, “fractional anticipatory goal re-
sponse.” This is the behaviorist’s explanation for why a 
rat tends to run faster the nearer it approaches the goal. 
It is a stimulus-response principle thought to result from 
pre-goal cue stimuli associated by generalization with 
past goal rewards (Hull, 1932, 1934). Apparently there 
is no research relating VFR-into-IMC and fractional 
anticipatory goal response. This is probably due to the 
almost-total ascendancy of cognitive theory in aviation 
psychology versus a steep decline in behavioral theory. 
That situation is unfortunate, given that many of the 
fundamental principles of animal behavior remain uni-
versal and unchanged. Human attitudes, motivations, 
and inhibitions impact behavior in addition to rational, 
analytical decision making.

Point 2d, the risk/benefit equation, is a plausible theory 
as well. The basic notion is that our brain, in combina-
tion with learning and emotions, instantiates some kind 
of “computational algorithm” that attempts to compute 
situational risk, then weighs that risk (or cost) and benefit, 
and finally stimulates us to make a choice between, say, 
behavior A or B:

If (benefit + noise
benefit

) > (risk + noise
risk

) Then A
Else B

“Benefit” here is an intangible mental construct based 
on tangible gain. Similarly, “risk” is an intangible mental 
construct based on tangible loss. More specifically, benefit 
and risk are based on the estimated success probabilities 
of a specific behavior or course of action. Both risk and 
benefit are person-specific and situation-specific. The two 
kinds of noise represent various sources of error, both 
about benefit and risk. 

One explicit goal of pilot training is to correctly calibrate 
risk-taking behavior. This means to fly when we should 
fly and to not fly when we should not. It is not simply 
about avoiding all risk. After all, we could eliminate all 
accidents by eliminating all flight. But the practical goal 
of learning to be proactive about safety is rather to learn 
how to sense the cues to risk, along with rules teaching 
us how to compare our subjective sensations and estima-
tions to some objective standard of risk. Finally, we also 
have to consider the recuperative aspect, to learn skills 
to get ourselves out of trouble, should we find ourselves 
inadvertently caught in some risky situation.

The current study concerns this problem of what 
motivates pilots to risk VFR-into-IMC flight. We chose 
to ignore the recuperative aspect of risk, focusing instead 
on how pilots do get into trouble in the first place. So far, 
this has usually been studied in situations where the pilot 

is airborne. Here, we examined a complementary situation 
where, given marginal weather right from the onset, we 
measured whether or not the pilot would take off.

This paradigm not only looked at another aspect 
of the overall problem but also simplified the baseline 
motivational situation in three ways. First, it minimized 
perceptual miscalculation (Point 1a), since we actually 
gave the pilots a weather report containing more accu-
rate current information than what they could derive 
through their own senses. Second, it minimized the issue 
of disjunctive and conjunctive events (Points 1biii, 1biv), 
since the experiment involved only one trial per subject. 
Third, it simplified the sunk-cost motivation (Point 
2b), since zero time or effort was invested prior to the 
adverse weather appearing. Any baseline sunk costs had 
primarily to do with elapsed time after the experiment 
began. Pilots might arguably have had a sunk cost if 
they showed up expecting to fly and had to give up that 
expectation, should they choose to stay on the ground. 
However, we avoided that cost by telling them they would 
be allowed to fly after the experiment, no matter what 
their experimental decision. The net result of all these 
simplifications was to let us focus more on Point 2d, the 
“risk-benefit equation.”

METHOD

Participants and Demographics
Sixty GA pilots participated in this study (53 males 

and seven females, aged 18-69; median 23.5, mean 26.0, 
SD 8.4). All subjects were instructed that participation 
was voluntary, and each signed an informed consent 
form after a formal briefing of the study parameters. In 
addition, each subject completed a basic demographic 
questionnaire before the study began and a debriefing 
form when finished (see Appendix B). 

Pilots had a median flight experience (GA plus com-
mercial experience) of 2.3 years (mean 4.2, SD 7.5, range 
.25-48.25). Median flight hours (GA plus commercial) 
were 183.5 (mean 755, SD 2604, range 35-20000). Ex-
actly one-half of the pilots were instrument-rated.

Means and standard deviations (SD) were skewed 
by the presence of a relatively small number of older 
pilots with a great deal of experience (see Appendix C). 
Therefore, medians were sometimes the more informa-
tive estimates to consider in discussion and distribution-
insensitive statistics the more appropriate to use during 
analysis. Appendix D details all variables examined. Ad-
ditionally, a data-conditioning technique (winsorization) 
was applied to correct for outliers during the analysis. 
(Appendix E).
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Experimental Design, Independent and Dependent 
Variables

The aim of this study was to examine some of the 
perceptual, cognitive, and affective processes used by GA 
pilots when deciding whether or not to take off into 
marginal weather. This necessitated finding correlates 
of takeoff behavior (predictors). This, in turn, required 
manipulation of conditions likely to induce takeoff.

Therefore, three independent variables (IVs) were set 
up to assess how each (plus their interactions) would 
subsequently influence a single dependent variable 
(DV)—Takeoff Decision.

These three independent variables were all factors 
external to the pilot, namely
1)   Three levels of marginal ground visibility

a) 1 statute mile (sm)
b) 3 sm
c) 5 sm

2.   Two levels of marginal cloud ceiling
a) 1000 ft
b) 2000 ft

3.   A financial incentive for takeoff
a) Straight salary ($17 per hour)
b) Straight salary plus a $200 sliding-scale bonus 

(described below)

Visibility and cloud ceiling are two familiar and im-
portant components of weather normally influencing 
pilot decision making. Financial incentive is a real-world 
commercial factor that, to our knowledge, has not been 
closely examined as a modulator of risk behavior in the 
GA setting. The goal here was to cover a wide enough 
range of weather conditions to have some in which almost 
no pilots would take off, and some in which practically 
all would. To that end, our selection of weather values 
was heavily influenced by the modal values for personal 
local-flight daytime minima reported in Hunter’s survey 
of 6,735 GA pilots (1995, pp. 22-23, Table 22, Q75 and 
Q79). This gave us plausible reference points for our two 
weather variables.

The financial variable was set to be appealing to our 
modal pilot. Demographics from past experiments showed 
that our usual subject’s age was circa twenties, with income 
modest, since a considerable number were students from 
local flight schools. Two levels of financial incentive were 
chosen. Low Financial Incentive consisted of a base salary 
of $17/hr for all 60 participants, whether they decided 
to take off or not, and was the only financial reward in 
that condition. In contrast, High Incentive pilots were 
offered the base salary, again regardless of takeoff, plus an 

additional bonus of a $200 for immediate takeoff. This 
bonus was engineered to decrease by $50 every 30 minutes, 
being billed as an offer made by an oil company, which 
supposedly needed a critical drill bit delivered as soon 
as possible to get interrupted production back on-line. 
Subsequent payments were made by check and mailed 
to each participant. 

A potential confound arose, in the sense that the 
reinforcement value of money varies in relation to the 
participant’s need for it. Unfortunately, there was no good 
way to control for this ahead of time, other than by 
random assignment to groups. Trying to assign subjects 
to groups based on either real-time or post hoc sample-
matching sometimes runs as much risk of introducing 
bias as it does of eliminating it, so we elected to assign 
group membership as a random function of whenever a 
given person happened to walk through the door.

Certain personality factors might predict takeoff into 
adverse weather. Specifically measured here were:

•Prior aviation risk-taking behavior
•Anxiety
•Impulsivity
•Risk orientation
•Sensation-seeking

because each has previously shown to bear some relation 
to risk-taking in other domains. Table 1 shows a brief 
list of the personality instruments administered, what 
they measured, and primary references to each in the 
open literature.

One of the planned statistical methods (logistic regres-
sion) would allow treating the scores on each of these 
instruments as an IV (technically a “predictor” in this 
context, because the variable was not actually subject to 
experimental manipulation). The strength of the statis-
tical relation between each pilot’s predictor scores and 
subsequent yes-or-no takeoff could then be measured 
and used to infer relations between decision making and 
the putative factors involved.

Apparatus and Procedures
All participants were given instructions to imagine 

themselves as pilots working for a private air cargo com-
pany currently contracted to transport a drill bit from Page 
Municipal, an uncontrolled airfield near Oklahoma City, 
OK, to an oilfield near Amarillo, TX. Because the field 
was uncontrolled, no weather condition pilots faced was 
a true technical violation of FAA rule or procedure. 

Pilots were instructed to consider themselves work-
ing on a per-hour basis with their base salary to be paid 
whether they chose to fly or not. The company itself was 
described as being in good financial shape, with corporate 
attitudes favoring the pilot as the ultimate tactical decision 
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maker. Pilots were instructed that their flight would have 
to be made under VFR because the aircraft was not instru-
ment-certified. They were strongly encouraged to treat 
their situation as close to reality as possible. They were 
also told that, no matter what their takeoff decision, their 
identities would be kept strictly in confidence.

Each pilot received a single trial containing one 
combination of Visibility x Ceiling x Incentive. The net 
result was a between-subjects, 3x2x2 design with 12 
cells, each containing five pilots. Cells had either two 
or three VFR-rated pilots, with the remainder being 
instrument-rated.

Each pilot received written instructions and an 8.5 x 
11-in roadmap-style map showing major regional cities 
and roads, with the weather front overlaid. At the bot-
tom of this map was a Meteorological Aerodrome Report 
(METAR)-style text weather report. Pilots also saw a visual 
simulation of the stated weather conditions shown from 
taxiway level using the high-fidelity Advanced General 
Aviation Research Simulator (AGARS) of the Civil Aero-
space Medical Institute. The simulator was configured as a 
Piper Malibu, a high-performance, single-engine aircraft. 
Finally, pilots received a standard sectional map showing 
airports, terrain features, and obstacles.

Pilots were given as much time as they required to 
complete their flight planning before countdown was 
initiated on the financial incentive. This typically took 
5-10 minutes. Once finished planning, they were asked 
to give their initial go/no-go decision. Pilots choosing to 
fly were then asked to take off in their assigned weather 
and fly for a period of time equivalent to their clearing 
the weather front (about 20 minutes). Those choosing 
to stay grounded were allowed to wait and see if the 
weather would change and were given an updated situ-
ation report every 30 minutes until a total of two hours 
had elapsed. However, during this time, the weather did 
not change, and this “opportunity” was primarily put in 
place to see if boredom and/or frustration would exert 
any sort of influence. Particularly in the High Incentive 
case, the time-dependent loss of the anticipated takeoff 
bonus (a secondary reinforcer) was expected to produce 
considerable frustration (Amsel, 1958; Hull, 1932) which 
could be avoided by taking off.

The experiment was terminated either after two hours 
for pilots electing not to take off, or after 20 minutes of 
flying for those airborne. The assumption was made for 
high-incentive pilots that, if they resisted takeoff until 
the bonus went to zero at two hours, they would prob-
ably continue to resist indefinitely. Low-incentive pilots 
electing to remain on the ground were therefore cut off 
at 2 hours to equilibrate them with their high-incentive 
counterparts.

RESULTS

The strategic aim of this study was to examine 
weather-related decision making. By exposing pilots to 
conditions of marginal visibility, we hoped to separate a 
large group of pilots into two groups—ones who would 
fly into bad weather versus ones who would not—and 
then study those two groups for critical differences. Those 
differences, both in personality factors and in reaction to 
specific environmental factors, might grant insight into 
the mind of the pilot.

Two analytical techniques were used, chi-square and 
logistic regression. Given appropriate comparisons, both 
give similar results. Chi-square has the advantage in sim-
plicity and universality of use. Logistic regression has the 
advantage of being able to interpret statistical interaction 
terms. However, extreme care has to be exercised because 
logistic regression is a complicated procedure with great 
room for error (Appendix F gives details).

Regression involves the search for predictors—mea-
surable factors that predict some outcome of interest. 
Appendix D gives the complete list of predictors used in 
this study. The tactical aim of regression is to create and 
test models—purposeful simplifications of reality used 
on a higher level to infer causes of behavior.

To summarize how we judged a model’s performance 
or quality, our major numerical criteria for judging regres-
sion model quality were a) Wald p; b) predictivity; and 
c) Nagelkerke R2. In logistic regression, model reliability 
is estimated with the Wald statistic. Wald p is analogous 
to regular p values in other statistics and estimates how 
likely we would be to get different results, were we to 
test a new group of pilots. Predictivity is expressed, first 
of all, by a raw percentage of cases successfully predicted 
(number of cases correctly predicted divided by the total 
number of cases). Second, predictivity is also expressed 
by R2, an estimate of explained variance. SPSS gives two 
kinds of R2 in logistic regression, Cox and Snell R2 and 
Nagelkerke R2. The Cox and Snell estimate addresses a 
model’s total theoretical deviation from perfect data fit, 
while the Nagelkerke estimate addresses the fact that 
certain models, in theory, cannot explain all the vari-
ance, even given their best fit. Therefore, the Nagelkerke 
estimate tries to address “explained variance divided by 
total explainable variance.” This usually results in a higher, 
more liberal numerical value for R2 but also one more 
arguably pragmatic. For this reason, we present only 
Nagelkerke R2 in this report.

Finally, we needed to assign a higher credibility to 
simple models—and ones based on theory—than just 
to models with high numbers for p, predictivity, and R2. 
There are both logical and statistical reasons for doing 
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this. We all know Occam’s Razor, the old adage that, all 
things being equal, the simplest explanation is usually the 
correct one. Highly complex theories often turn out to be 
wrong. This applies to regression in the sense that, given 
two models with equal p, predictivity, and R2, the model 
based on sounder theory AND containing fewer predic-
tors generally proves more stable on retest (Tabachnick 
& Fidell, 2000, ch. 12).

Analysis of the Full Data Set (N=60) 
This experiment began with a total of 83 measurements 

on various environmental, motivational, and psychologi-
cal aspects of both the situation and the pilots, some of 
which would reasonably be better than others at predict-
ing takeoffs. Two of these predictors were independent 
variables involving the physical environment (Visibility, 
Ceiling) and a third was psychological/motivational (Fi-
nancial Incentive). That left 80 descriptive variables, both 
demographic and from personality tests. Most involved 
numbers which could vary continuously (or reasonably 
so). A few involved measurement of discrete categories, 
usually the binary choice yes/no. Admittedly, categori-
cal data can be confusing, requiring careful thought and 
attention in setting up proper contrasts (Appendix E). 
Nonetheless, all 83 candidates started out as plausible 
predictors for the discrete (yes/no) dependent variable 
of Takeoff.

Before speaking to specifics, four potential criticisms 
must be addressed, namely boredom, instrument rating, 
multicollinearity, and accidental group differences. First, 
during a two-hour experiment in which pilots had to 
essentially sit and do nothing while waiting for weather 
reports, we might expect boredom to interact silently 
and uncontrollably with the financial bonus to induce 
the high-incentive pilots to take off more quickly than 
the rest. However, boredom demonstrated no evidence 
of being a factor in this experiment. In fact, among pilots 
who chose to take off, those who were offered the takeoff 
bonus actually took longer to make their decisions than 
did low-incentive pilots (mean decision latency was 31.6 
vs. 22.9 minutes respectively, t = -.61, p = .55, two-tailed, 
unequal variance). From this we surmised that, if bore-
dom did have any effect, it was distributed about equally 
between the two financial incentive groups.

A second concern could be the questionability of 
testing instrument-rated pilots in a situation demand-
ing VFR flight. While the experimental groups were 
set up to distribute the two types as equally as possible 
among the various treatment conditions, the question 
could still be reasonably asked. If instrument rating were 
a contaminating factor, then we would expect the two 
groups to differ in takeoffs when sorted by rating. But 

no such effect was evident. Instrument-rated pilots had 
slightly fewer takeoffs, but not significantly so (t = 1.29, 
p = .20, two-tailed, unequal variance). From that we 
surmised that using instrument-rated pilots was accept-
able for this study.

The third concern had to do with multicollinearity. 
Multicollinearity is basically about two or more predic-
tors measuring the same experimental factor. This can 
artificially inflate a model’s performance (Tabachnick 
& Fidell, 2000). Given the large number of candidate 
predictors examined here, it made sense to look at their 
correlations, to ensure that they were not merely measur-
ing the same factor more than once. Appendix G shows 
correlation matrices for the small number of significantly 
correlated predictors. These show nothing surprising. Fac-
tors that should be correlated were correlated, specifically 
those measuring related aspects of the same construct. 
Likewise, factors that should not be highly correlated 
were not. Armed with that information, we then simply 
needed to follow standard procedure and avoid models 
that contained highly correlated factors.

The fourth concern (accidental group differences) was 
certainly valid. Certainly, one cell in the analysis might 
end up with, say, a significantly higher mean number 
of flight hours than other cells. This might exert some 
unknown, unwanted effect on takeoffs. However, little 
could be done in a study of this type to avoid this prob-
lem because there were simply too many predictors being 
examined. Typically, with a small predictor set, one might 
counterbalance subjects on values for every predictor and 
every cell. But, with dozens of predictors, that kind of 
counterbalanced subject assignment to cells is impossible. 
So standard operating procedure in a case like this is to 
rely on random assignment to wash out most unwanted 
cell-mean differences and, for the most part, it does.

Descriptive Statistics—Demographics and Debrief 
Data. Table 2 summarizes the demographic data. As is 
evident from the medians in Table 2, most of these pilots 
were fairly new. Most were males (53/60), and recall that 
exactly half were selected to be instrument-rated.

The primary statistical problem in the demographic 
data was the presence of outliers, a small number of 
extremely deviant scores (defined here as values greater 
than 3.0 SD above or below the mean). This was imme-
diately evident from looking at the means and standard 
deviations. When the two are nearly equal, this implies 
logical absurdities such as the possibility of having nega-
tive flight hours. In reality, this was an artifact of outliers. 
Outliers are common in aviation studies, particularly 
in the demographic data. In our case, the outliers were 
older pilots with a large amount of flight experience. As 
mentioned, Appendix C details the probabilities of skew 
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normality (p
zskew

) and kurtosis normality (p
zkurt

), far less 
than .001 in most cases, indicating severe non-normality 
of these particular distributions. 

Fortunately, there are well-accepted ways to deal with 
outliers. These data responded well to winsorization (Ap-
pendix E). Virtually all outliers were eliminated with only 
minimal change to the data’s ratio-scale structure.

Regression analysis can be problematic when a large 
number of predictors are examined. First, there has to be a 
limit to the number of predictors allowed in each model. 
Generally between 3-10 cases (here meaning pilots) are 
needed per model predictor (R. A. Foster, personal com-
munication, Jan. 15, 2004). Second, the sheer number 
of candidate predictors present at the beginning of the 
analysis can be a problem (Foster & Stine, 1998). Finally, 
a number of widely different models may show roughly 
the same predictivity and explained variance (R2). Under 
such “shallow model” conditions, it may be hard to logi-
cally defend any one model as best.

Rather than dwell on complex statistical issues at this 
time, we address them in a separate technical report en-
titled Pilot willingness to take off into marginal weather. 
Part II: Antecedent overfitting with forward stepwise logistic 
regression. For the purposes of this discussion, the reader 
can be assured that the results presented here (Part I) 
were coordinated with, and subjected to the rigorous 
scrutiny detailed in, the Part II report. We now turn to 
the analysis of the full data set.

Individual Predictors. In this analysis, each predic-
tor was first run separately in a logistic regression model 
including a constant. This was done to get a feel for the 
performance of each predictor before doing more complex 
modeling. One reason for including the constant was 
pragmatic. SPSS tends to stall without it unless a model 
has at least one extremely strong predictor to start with. 
The other reason was theoretical. The constant-only 
model is basically a guess based on the after-the-fact 
success ratio (i.e., takeoffs/total runs). The importance 
of this will become increasingly clear as we discuss the 
models themselves.

Appendix H contains the complete results of single 
predictors for the full data set. At this point, it was un-
necessary to test both conditions of binary categoricals 
because single-predictor analysis yields the same result 
no matter which contrast is tested. Summary results for 
our three primary IVs are listed in Table 3.

In this particular case, chi-square and logistic regres-
sion gave identical p values. These revealed that the ef-
fect of our three primary IVs was not remarkable across 
the full data set. Financial Incentive was the strongest, 
yet its nominal Wald p was only .07, R2 = 7%, and the 
Financial Incentive term only increased predictivity 3.4% 
(two cases) above performance yielded by the model’s 

constant alone. In other words, none of our three IVs, 
when examined by itself, performed much better than 
an educated guess. Among the remaining 80 predictors, 
only the Venturesomeness scale of the Multidimensional 
Personality Questionnaire (MPQ) was even remotely 
notable (p=.088, R2 = 8%). Moreover, these numbers 
were uncorrected for the number of comparisons made 
(experimentwise Type I error).2 If they had been cor-
rected, the effective p-values would have been even less 
significant.

Interactions. Interactions in regression reflect synergy 
between predictors. Logically, they ask “What factors 
working together multiplicatively affect takeoffs more than 
the same factors would if merely added together?” Table 
4 lists the results for two- and three-way interactions 
between our IVs in the full data set.

A significant interaction implies that the effect of 
one variable is different at different levels of the other 
variable(s). To better visualize this, Figure 2 shows the 
actual raw takeoff frequencies split by Financial Incen-
tive. In the Low Incentive group, note the cell at 5 miles 
visibility and 2000-ft ceiling. This has four takeoffs. This 
illustrates how interactions work. It as if Visibility and 
Ceiling team up to produce an outsized effect at that 
particular combination.

At the level of main effects, trends emerged here as 
expected. Fewer pilots generally elected to take off as vis-
ibility, ceiling, and financial incentive decreased. However, 
as Figure 2 shows, inter-cell variability kept these trends 
from being statistically significant—particularly the pres-
ence of four pilots flying at the very worst conditions of 
visibility and ceiling.

One thing especially interesting about these interac-
tions was the notion that Visibility x Ceiling very prob-
ably constituted a cognitive “chunk.” In other words, it 
was logical that many pilots cognitively considered both 
factors simultaneously and synergistically, suggesting that 
“the whole was greater than the sum of the parts.” This 
probably denoted a key underlying mental representation 
driving some of these statistical interactions. Inside the 
minds of pilots, “weather” was probably not just visibility, 
not just ceiling—but both at the same time (along with 
other factors). 

As for the personality variables, examining all pos-
sible interactions between all predictors would have been 
tedious and unwise, inflating the Type I error rate ever 
higher. There were 83(83-1)/2 = 3403 possible two-way 
interactions alone. Clearly, it made good theoretical 
sense to limit examination mostly to interactions in-
volving the IVs. So, operating on the assumption that 
“Weather” ≅ Visibility x Ceiling, we therefore inspected 
weather-by-everything-else, plus financial incentive-by-
everything-else. 
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This turned out to be surprisingly uninformative. 
Thirty-one models of the type Vis x Ceil x Predictor Y and 
Financial Incentive x Predictor Y had nominal significances 
of < p = .10 (uncorrected). This implied four things. First, 
there were obviously a large number of models, roughly 
equal in reliability. Second, after correcting merely for 
multiple comparisons, none of these would be traditionally 
significant. Third, most of the predictivity was coming 
from the IVs themselves (“Weather” and Financial In-
centive)—not from Predictor Y—because the reliabilities 
and R2s were not much better than the IVs alone (plus 
constant, of course). In many cases, the additional predic-
tor decreased model performance. Fourth, even the very 
most-reliable model without missing values, Weather x 
MPQ Aggression (p = .008), only showed predictivity of 
70% (versus 65% for Weather alone, and 58.3% baseline 
for constant alone) and R2 of .186 (versus .101).

Preliminary Conclusions for Full Data Set. So what 
did these full-set models mean? In all candor, we must 
not place too much stock in them. While predictivities 
in the 80% range might seem impressive, less than half 
the outcome variance was explained. We have to keep in 
mind that the model constant alone is always capable of 
predicting at better than a chance (50%) level. Nor was 
correction made for the number of models tested (which 
would have pulled significance levels down even further). 
Finally, there were quite a few other models having results 
almost as good as the ones examined. So we ought to 
interpret these results conservatively and stick to relatively 
high-level conclusions that express commonalities across 
different models.

On the surface, the results looked confusing. There 
were many models, often with similar performance. But, 
in truth, it was not hard to understand the big picture: 
a) There were undoubtedly predictor effects going on, 
but they were multiple effects, pulling in different direc-
tions; b) Pilots have multiple, simultaneous motivations, 
and the effects of environment are filtered through each 
pilot’s unique, multi-dimensional personality; c) So the 
net effect on behavior is complex. Not altogether unpre-
dictable—just complex.

Another way of saying this is that pilots were appar-
ently not just being swayed by the independent variables. 
They were interpreting the visibility, ceiling, and financial 
incentive in various combinations through the medium of 
their own individual personalities, which were highly vari-
able and themselves comprised of interrelated components, 
some of which acted synergistically.

Another high-level realization was that the more reli-
able model predictors could be usefully categorized into 
either “go” or “no-go” factors. The beta (β) term in the 
SPSS regression output expresses the direction of influ-
ence for its associated factor. A β >0 means that pilots 

with higher scores on that factor are more likely to take 
off. That is a go factor. Conversely, β < 0 denotes a no-go 
factor. For no-goes, the higher the predictor score, the 
less likely is takeoff. 

This underscores a lesson regarding the modeling 
process itself. As our experience with modeling became 
deeper, it became clear that stronger models typically had 
at least one go predictor and at least one no-go predic-
tor. Part of this pairing effect may just be an artifact of 
how the logistic prediction equation is used (Appendix 
F, Equation 1). Optimal modeling may mathematically 
require either a mix of go and no-go predictors, or else 
a constant that can serve as either positive or negative. 
This makes some sense from the point of view of having 
to minimize an error function during data fitting.

But, mathematics aside, what could also be happen-
ing here is that people actually may be motivated by two 
fundamentally different cognitive processes. There could 
be a positive go-factor process assessing and weighing what 
is good about a situation versus a negative no-go process 
assessing and weighing what is bad about the exact same 
situation. This certainly makes intuitive sense and may be 
one operating principle underlying these results. At this 
point, it would be premature to argue the precise nature 
of these go/no-go factors. But we do need to keep this 
in mind as a heuristic for future use.

To summarize, without a clearly front-running model 
for the full data set, it ultimately seemed reasonable to 
break the data into Low Incentive versus High Incentive 
groups, and conduct separate analyses. That would control 
for the effect of the most reliable single IV of Financial 
Incentive, and it would allow the Low group to serve as the 
control and the logical contrast for the High group.

Analysis of the Low Financial Incentive Group 
Only

Simple Models With a Constant. Following the same 
basic process used for the full data set, the Low Incen-
tive data were separately winsorized, rather than merely 
breaking the winsorized full set in two. This separate 
winsorization moderated outliers, while ensuring that 
data were treated as if they had been from a separate 
experiment.

Appendix I shows the full single-predictor-plus-
constant analysis for this group. Visibility was the only 
single predictor to even approach traditional, uncorrected 
significance (Wald p = .064, R2 =.177, predictivity boost 
over the constant-alone model [76.7 – 70] = 6.7% = 2 
extra cases). 

One of the major problems confronting this analysis 
was precisely the high base rate of pilots refusing to take 
off (70%). And, while this did say quite a bit all by 
itself, it also guaranteed that any model with a constant 
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could always be at least 70% correct simply by “guess-
ing” non-takeoff. This left all other model predictors to 
fight over the remaining variance, almost guaranteeing 
modest performance no matter how clever the model. 
It also suggested looking at models without a constant, 
even if they might be harder to bootstrap.

Two Outliers Are Dropped. Close examination of 
the pilot debrief data ultimately suggested re-running 
the analysis minus two outliers—two pilots who chose 
to take off into the absolute worst weather for no appar-
ent reason. Statistical analysis of the two’s demographic 
and personality data at first failed to show any measur-
able significant differences from the rest of the pilots on 
any predictor. On the surface, their personalities and 
motivations seemed normal, yet their takeoff behavior 
seemed a mystery. Finally, their debrief sheets provided 
a very plausible story:
Pilot 1 (age 29)
1.   Zero latency (i.e., impulsive takeoff ).
2.   Had never had a traumatic weather experience 

before.
3.   Had never flown a Piper Malibu before and was 

anxious to try out the simulator.
4.   Said “I would never try that again.”
5.   On retest a month later with the same scenario, he 

stayed on the ground.

Pilot 2 (age 22)
1.   59 minutes latency (very hesitant).
2.   Had never had a traumatic weather experience be-

fore.
3.   Had flown a similar situation in real life.
4.   Went aloft to scout the situation. Found I-40 (high-

way leading straight to destination)
5.   Next said he was afraid to turn around or divert, for 

fear of losing sight of I-40.
6.   Said “I probably wouldn’t do it again.”
7.   On retest, he also stayed on the ground.

This turned out to be a classic case where quantita-
tive data failed to uncover the root causes of behavior, 
but the qualitative story was crystal clear. Pilot 1 made 
an impulsive takeoff decision, based on his lack of any 
prior truly bad experience with weather, coupled with a 
youthful desire to fly a million-dollar simulator in which 
he knew he could not really get hurt. Pilot 2 took a far 
more conservative tack but, ironically, one leading to 
the same takeoff decision. He was quite hesitant, taking 
nearly an hour to make up his mind to fly. Yet he, too, 
had never had a truly bad experience with weather and 
so decided to go aloft and scout the conditions on the 
assumption that he could always turn around and come 
back if the situation simply proved too risky. However, 

once aloft, he quickly found Interstate 40, the major road 
leading straight to the destination. Once on I-40, he said 
he was literally too scared to turn back, for fear of losing 
sight of the road. From the weather map he knew that 
the front would break in about 20 minutes—and, from 
that knowledge, he felt it actually less risky to keep going 
than to abort the flight.

The question at hand here was whether or not drop-
ping these two pilots from the analysis would be justi-
fied. We felt it was. First, this was an exploratory study, 
so extensive reporting of results was critical. Low Type 
I error always comes at the expense of inflated Type II 
error. So, completely rigid standards of reporting would 
mean failing to report potentially valuable preliminary 
analytical information useful to others in the field. Sec-
ond, we had at least anecdotal information supporting 
the idea that neither pilot would have taken off, had they 
had more experience with weather. Both pilots essentially 
said they regretted their decision (see, above, the final 
quotation made by each). To check their sincerity (and 
the hypothesis of weather-experience effect), we re-ran 
both pilots a month later, using the exact same scenarios. 
Neither chose to fly the second time around.

This was priceless empirical evidence: Inexperience 
enables foolish behavior. Inexperienced pilots lack key 
mental constructs, namely how difficult it is to fly through 
certain kinds of weather. This is a root problem. Moreover, 
this root problem is correctable. It can be fixed with a very 
small amount of simulated weather experience. Our two 
errant young pilots aptly demonstrated that experience 
can change behavior, since this experiment, itself, was 
precisely a small amount of simulated weather experience. 
This was good news for pilot training, and made sense to 
report, whether based on anecdotal evidence or not.3

With two outliers excluded from the analysis, the Low 
Incentive data now told a stronger, richer, more compel-
ling story. Forward stepwise regression (LR method) was 
now able to produce 3-4-factor models with predictiv-
ity as high as 92.9%, and R2 as high as .921. In perfect 
honesty, arcane-but-valid statistical considerations did 
suggest that many of these models may have been artifacts 
of the regression procedure.4 So in the end, rather than 
defending stellar-but-suspect models, it made more sense 
to retreat to a single, simpler, theoretically defensible 
model, namely Visibility x Ceiling (+ constant). As Table 5 
summarizes, this model’s statistical effect might be lower, 
but it would certainly be far more reliable because it was 
based on straightforward logic.

This implied compactly that “Weather”—when defined 
as Visibility x Ceiling—was a reasonable predictor of take-
off in the Low Financial Incentive group. The constant 
term embodied an overall group tendency to regard all 
the weather conditions as bad, while the VxC interaction 
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term represented a kind of finer-grained distinction being 
made between the six conditions of visibility and ceiling 
themselves after the average effect of weather had been 
accounted for. 

To be circumspect, modelwise predictivity (85.7%) 
was only 10.7% higher than the constant-only baseline 
(75%). It was also true that we did not correct for experi-
mentwise error. But keep in mind here that the constant, 
itself, undeniably reflected an extremely powerful weather 
effect here. The easiest way to understand this is to realize 
that virtually all pilots would have taken off in perfect 
weather. As it was, 21 of 28 stayed on the ground. The 
odds against that happening by chance were extremely 
remote.5 

This model was simple and made a great deal of sense. 
It contained one factor essentially saying “None of this 
weather looked good” plus a second factor saying “We can 
represent levels of ‘weather acceptability’ by multiplying 
visibility times ceiling.” Together, both factors accounted 
for about half the explainable variance in takeoffs. The 
rest could be attributed to individual differences, that is, 
individual pilot logic reasoning and affective states.

In short, pilots appeared to have many, varied, and 
individual motives for their risk behavior here. They did 
show some commonalities. No pilot thought any of this 
was good weather. But they also displayed considerable 
individual reaction to specific weather combinations. 
There is no such thing as the “average” pilot when it 
comes to weather.

Analysis of the High Financial Incentive Group 
Only

Simple Models With a Constant. Like the Low 
Financial Incentive group, the High Incentive data were 
separately winsorized, rather than merely breaking the 
winsorized full set in two.

Appendix J shows all single-IV models (+ constant). 
To summarize, very little stood out.

Testing the VxC+Constant Model on the High 
Incentive Data. Given the good performance of the 
VxC+constant Low Incentive model, it made sense to 
try this on the High Incentive (n=30) data as well. Table 
6 summarizes the result.

Note that 53.3% of pilots did take off (versus 30% 
in the Low Incentive group). The non-significant VxC 
interaction here implies that the High Incentive group 
failed to show the same degree of fine-grained weather 
discrimination as the Low Incentive group (explained 
below).

This model did show evidence of an overall gross-
weather effect, because the constant alone could predict 
a base rate 53.3% of takeoffs. Since we can assume 
that nearly all pilots would take off in perfect weather, 

something had to explain all those non-flying pilots, and 
nothing was plausible other than weather.6 As before, the 
base rate represented an overall group tendency to regard 
all the weather conditions as bad. 

A second, more startling observation was the com-
plete and utter lack of VxC interaction in the high-in-
centive group (p=.396). This term represented how the 
individual pilot judged the specific weather in a given 
cell—fine-grained weather discrimination, in a manner 
of speaking.

Given our assumption of weather discrimination be-
ing the VxC “cognitive chunk,” it was logical to ask if 
some kind of fine-discrimination effect might have been 
hidden elsewhere, for example inside a VxCxPredictor Y 
interaction. Appendix K shows this was not supported. 
Only three of 86 interaction contrasts fell below the un-
corrected α = .06 level (this was even fewer than expected 
by pure chance).

This was extremely meaningful and important informa-
tion. Whereas specific weather conditions probably did 
influence groupwise takeoffs under low financial moti-
vation, once a financial bonus entered the picture, the 
same differences in weather ceased to matter. This point 
cannot be stressed too much. As soon as money entered 
the picture, the focus of pilot rationality shifted away from 
attention to weather details and toward something else. 
And the most logical candidate from the pilot point of 
view, of course, was how to successfully acquire the bonus. 
This finding should be especially relevant to commercial 
GA pilots, for whom salary is frequently tied to whether 
or not a particular flight is made at a particular time.

Detailed Analysis. It is one thing to make this assump-
tion, though, and quite another to support it against all 
challenges. For one thing, groups are made up of individu-
als. What constitutes a groupwise effect may not equally 
apply to all individuals within that group. We knew we 
had at least some pilots for whom the $200 bonus was 
financially irrelevant. In fact, one was recently retired 
from commercial service at a final salary of $250,000/yr. 
He came right out and told us the bonus was irrelevant. 
So did these “bonus-immune” pilots differ in takeoffs to 
their “bonus-susceptible” counterparts?

With that in mind, the High Financial Incentive data 
were sorted into a 2x2 matrix (Table 7). There had been 
one predictor, buck_mot, which was a very straightfor-
ward debrief question: “If you were in the ‘high-incen-
tive’ condition, did this affect your willingness to take 
off?” (yes/no).7

A “Yes” answer would supposedly indicate a bonus-
susceptible pilot, with “No” indicating a bonus-immune 
pilot. These answers could then be compared with actual 
yes/no takeoff behavior.
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Bonus-susceptible pilots should have been more likely 
to take off than bonus-immune pilots. Table 7 shows 
that a trend did emerge as predicted (chi square = .062, 
uncorrected). This was also supported by logistic regres-
sion (Appendix J, buck_mot Wald p=.071). Those not 
strongly desiring the bonus tended to stay on the ground 
(“actual frequency” column, gray cell, n=7). Those desir-
ing the bonus tended to take off (n=12).

This was encouraging, but an alternate hypothesis could 
have explained the results. Could the average weather just 
have been different in the four cells? After all, pilots had 
not been assigned to any particular weather conditions by 
buck_mot. So, for instance, perhaps the bonus-susceptible 
pilots had merely had better-than-average weather, and 
maybe their stated financial desire had had nothing to 
do with their higher takeoff rate.

To investigate this, we created an “average weather” 
score for each cell by multiplying Visibility x Ceiling for 
each pilot,8 summing values cell-wise, and dividing by 
the cell n (Table 7). By this method, larger numbers 
represented better average cell-wise weather. The overall 
average was 4476.

The result was complex, but not impossible to inter-
pret. First, bonus-susceptible pilots (buck_mot=“Y”) had 
(by pure chance) worse-than-average weather (2333 and 
4333). Yet they still took off at a higher rate than bonus-
immune pilots (12/18 takeoffs vs. 3/10 non-takeoffs, or 
67% vs. 30%). So we could rule out the idea that the 
bonus-susceptible pilots had merely had better-than-aver-
age weather, because they did not. 

Second, Appendix K shows a split-significance inter-
action. The VxCx buck_mot interaction was nearly sig-
nificant for the “N” group (.052, uncorrected, meaning 
that pilots who answered “No” to buck_mot were coded 
as “0” in the logistic regression equation, so the analysis 
was focusing on the “Yes” group). Given the yes-group 
β of .450, this implied that the better the weather, the 
more bonus-susceptibles tended to take off. It was as if 
their internal “threshold of acceptability” for weather had 
been lowered by the presence of the bonus.This cleared 
up the picture quite a bit. Now it looked like we were 
dealing with two sub-populations. In a loose sense, money 
behaved like an infection. Some seemed more susceptible 
to it than others.

Moreover (although we did not specifically test it), we 
could speculate that the degree of susceptibility would be 
a function of how much money was involved. Logically, 
more pilots should take off for $1,000,000 than for the 
$200 offered here. But the “infection threshold” is prob-
ably less important than the higher-level principle that 
money influences people to take risks they normally would 
not take. From a theoretical viewpoint we could say money 
is a go factor that skews the cost-benefit equation.

Buck_mot seemed to measure the net effect of that 
equation—that is, the perceived benefit minus the per-
ceived cost. Further evidence of the potential of buck_mot 
can be found in Appendix L. A total of 29 of 172 (17%) 
p<.05 (uncorrected) 3-way predictor interactions involved 
buck_mot. This was a greater proportion of low p values 
than found in any other 3-way predictor combination 
tested.

Case Study of Two High Incentive Outliers. Like 
the Low Financial Incentive group, the High Incentive 
group also had two outlier pilots who took off in the 
very worst weather condition (1 mile/1000 ft). In the 
Low group, elimination of those outliers cleared up the 
analysis greatly. Was a similar approach appropriate for 
the High group? 

It appeared that the data did not support that approach, 
mainly because of the debrief information. The first High 
Incentive pilot told us he had taken off because he a) had 
flown a similar situation before, b) knew he could not get 
injured in the simulator, c) was an instructor with 2500 
flight hours experience, and, d) said the bonus was very 
significant to him (5 on a scale of 5). The second pilot 
said that he a) also had flown a similar situation before, 
b) also knew he could not get injured in the simulator, 
c) had a low crashsig score (2 out of 5, meaning that, had 
he crashed during the subsequent flight, he would have 
felt only “a little” embarrassed by it), and, d) also said the 
bonus was “fairly” significant to him (3 out of 5).

In other words, like the two Low Incentive pilots, 
neither of these High Incentive pilots seemed particu-
larly intimidated by the simulator. But, unlike the Low 
Incentive pilots, these two knew precisely what they were 
getting into because they had done it before in real life. 
Both flew calmly and methodically, executing the flight 
without incident. And both told us they would repeat 
their decision, given the opportunity. Their systematic 
approach was quite unlike the first Low Incentive pilot 
who took off on a lark, or the second who took off and 
was too scared to turn back once he found I-40. The Low 
pilots both said they had made a mistake and refused to 
take off when retested a month later. The High pilots gave 
every impression of knowing precisely what they were 
doing. This gave little rationale to eliminate their data.

Summary of Results for the High Financial Incentive 
Group. In summary, we concluded that both weather and 
money had some role in predicting takeoff in the High 
Financial Incentive group. However, there was more to 
it than met the eye. Money probably changed the effect 
of weather most for the sub-group of individuals who 
wanted it most. In the absence of the takeoff bonus, 
most pilots seemed to judge weather rather loosely, as 
“acceptable” or “unacceptable.” In the presence of the 
bonus, things got more complex. Those pilots seemed, 
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first, to have a lowered overall threshold for what they 
considered “acceptable.” Second, they also seemed far 
more likely to take off when given better combinations 
of visibility and ceiling—as if they became more sensitive 
to the VxC interaction.

In short, pilots could be sorted into two groups accord-
ing to stated financial motivation—bonus-susceptible ver-
sus bonus-immune. Bonus-immune pilots seemed more 
sensitive to weather, since only 30% took off, whereas 
67% of susceptible pilots took off. Money is apparently 
capable of shifting the “acceptable weather threshold” for 
a substantial number of pilots (but not all pilots).

However, not all High Incentive pilots behaved pre-
dictably, merely according to money. Nine of 28 (32%) 
made decisions opposite to their stated financial motive. 
Obviously, they had other, varied motivations beyond just 
weather or money. Finally, we can assume that some of the 
six bonus-susceptible non-takeoffs might have taken off, 
had they not serendipitously received worse-than-average 
weather. This would have further increased the predictive 
value of stated financial motivation.

Is the Simulator a Valid Environment to Test Finan-
cial Motivation? 

An important issue to explore here concerned a criti-
cism some make of in simulo risk studies, namely why 
not take a chance if the payoff is big enough and the risk 
of dying in the simulator is zero? This concern has to be 
addressed, since it implies that simulator studies may not 
be valid under certain conditions.

Two debrief questions were asked to try to quantify 
this issue. An affective predictor crashsig was derived from 
the question “If you were to crash in the simulator, how 
embarrassed would you be?” This was rated ordinally 
(rank-ordered) on a scale of 1 (“not at all”) to 5 (“ex-
tremely embarrassed”).9 Similarly, a cognitive predictor 
simmot was derived from the question “Did the fact that 
this was a simulation (and not reality) affect your willing-
ness to take off?” This was scaled ordinally as “decreased 
willingness,” “no effect,” and “increased willingness.” If 
either, or both, of these scores correlated negatively with 
takeoff, that would provide support for the notion that 
the simulator task was invalid. For example, if pilots low 
in embarrassment were more likely to take off, that could 
arguably imply a lack of “appropriate fear” of, or respect 
for, the simulation.

Neither item was reliable at predicting takeoff (crash-
sig Wald p = .135, lowest simmot p = .260 by Deviation 
method). Nor was the interaction of these two signifi-
cant (p = .199). This was as we would prefer. However, 
integrity demands claiming only modest support for 
simulation validity. First, we knew we had at least two 
individuals who did not take the risk terribly seriously 

because they openly admitted it (see above, High Incen-
tive condition). Second, self-reports may or may not be 
trustworthy. There could have been individuals who 
misrepresented themselves during debrief. Third, the 
crashsig data represented only 40, and the simmot data 
51, of the 60 pilots (the idea to ask these questions came 
in mid-experiment). Finally, in formal logic, the absence 
of support for something’s invalidity is necessary, but 
insufficient, to confirm its validity.

In the end, perhaps the sensible thing to conclude 
is, once again, that “The action is in the interaction.” 
Simulator realism probably interacts with other individual 
personality factors as well as external environmental fac-
tors to influence the decision of some pilots more than 
others. In the final analysis, it is noise—an uncontrolled 
source of variance. We can probably only hope to control 
it by random assignment of participants to groups and 
conditions because no modern Institutional Review Board 
is likely to permit use of electroshock or any truly puni-
tive consequence for a simulated crash. The only other 
alternative (counterbalancing) is rarely a viable option. 
Given a limited subject pool plus a host of other factors 
equally worthy to counterbalance, that becomes virtually 
impossible, leaving random assignment the only truly 
viable option for exploratory studies such as this.

DISCUSSION

This was an extremely difficult analysis, for three main 
reasons. First, there were no easily identifiable effects 
for the independent variables (Visibility, Cloud Ceiling, 
Financial Incentive), or for the rest of the takeoff predic-
tors examined one at a time. Whatever was influencing 
takeoff was far more subtle and hidden.

There was certainly one enormous statistical effect for 
“weather” as a whole. Over half the pilots chose to stay 
grounded, whereas close to 100% would have normally 
taken off in perfect weather. The trouble came in trying 
to determine what “weather” meant in the minds of the 
pilots, given that it did not seem to mean visibility by itself 
or ceiling by itself. The main logical alternative left was 
that visibility and ceiling were somehow interacting, and 
that takeoff behavior was possibly also being influenced 
by factors such as individual pilot personality, experience, 
knowledge, and financial incentive. These other influences 
could have acted separately, or interactively in complex 
combinations, possibly unique to each pilot. So the way 
to get at the “Go/No-go equation” was to examine more 
complex, multi-factor models.

After exhaustive search, there proved to be dozens of 
roughly equally well-performing multi-factor models. 
These had marginal significance, indicating that multiple 
factors were exerting a concerted effect, often in the form 

--
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of interactions. Plainly stated, pilots do not normally 
make important decisions based on a single factor alone. 
They consider multiple factors simultaneously. Moreover, 
different pilots are motivated by different combinations of 
internal and external circumstances. This is not a simple 
conclusion, but it is logical and defensible.

The second main difficulty with this analysis was the 
side effect of looking at so many different models. This 
greatly increased the probability of Type I error (the chance 
of appearing to have an effect when none is truly present 
in the population at large). On the one hand, in such a 
preliminary study we wanted to explore a large number 
of candidate predictors to look for effective ones. On the 
other hand, had we used anything as statistically rigorous as 
a Bonferroni-type correction, there would be no results to 
report10. Since this was a preliminary study, it made sense 
to report preliminary results, as long as it was perfectly 
clear that the values reported needed to be considered 
strictly tentative, and that we followed through with a 
Part II report on statistical issues, which we have.

The third reason this analysis was difficult concerned 
the nature of causation itself. The exegesis of these data 
has to be both quantitative and qualitative. Neither way 
of looking at it is complete all by itself. Just looking at 
numbers often fails to uncover a pilot’s full motivations. 
Sometimes the simplest, most reliable thing to do is to 
just come out and ask them why they did what they did. 
And yet, we certainly respect the standard arguments 
against qualitative data, namely that each person’s story 
is anecdotal, and that people occasionally dissemble, or 
may not even be conscious of their full motivations. 
Therefore, the most complete solution we can offer is 
to cross-check numbers with stories and look for concur-
rence and confluence of logic. A “good story” usually can 
be supported by numerical data.

High-Level Conclusions
“Go Factors” and “No-Go Factors” Modulate Risk 

Behavior. Go factors can be defined as ones that increase 
the chance of a pilot’s proceeding with some risk-laden 
course of action. No-go factors are then factors that 
decrease the likelihood of taking that risk. Go/no-go 
factors can be external to the pilot (e.g., cloud ceiling) 
or internal (e.g., anxiety). We can hypothesize that each 
pilot has a unique go/no-go “cognitive/affective equation” 
whose outcome we can model, based on some weighted, 
summed combination of factors.

In fact, this was just the assumption underlying our 
logistic regression analysis. In each model, β terms defined 
go factors when β > 0, and no-go factors when β < 0. 
Predictivity and R2 were taken as indicators of a factor’s 
relative strength, and Wald p indicated reliability, the 
likelihood that our results were due to chance. As it turned 

out, estimation of reliability was more complicated than 
indicated by the SPSS output. But that did not change 
the basic, high-level conclusion that go factors and no-
go factors probably do capture much of the way pilots 
actually think about marginal weather (as well as many 
other risk factors). That, by itself, is a very useful way to 
think about risk-taking behavior because it does seem to 
reflect how people think. Usually, part of us wants to do 
one thing while another part wants to do the opposite.

Individual Demographic and Personality Factors 
Were Not Good Predictors of Weather-Related Risk 
Taking. Demographic factors such as pilot age and flight 
hours did not produce reliable, highly predictive risk mod-
els all by themselves here. The exception was models with 
interaction terms (discussed below). The same was true of 
such personality factors as sensation seeking, aggression, 
venturesomeness, and anxiety. Essentially, this said that 
no one factor or group of individual factors belonging to 
pilots themselves could explain most takeoff decisions. 
Whatever was shaping pilots’ weather risk decisions was 
not simple, but complex.

Pilots Probably Look at Groups of External Weather 
Factors as “Cognitive Chunks.” What did produce a 
large number and variety of interesting models was statisti-
cal interactions. Scores of models contained interactions 
demonstrating marginal reliability. Some of these were 
undoubtedly artifacts because false-positive results do oc-
cur whenever many, many models are tested. However, 
the large number of “almost significant” models found 
makes it unlikely that all were meaningless.

Statistical interactions imply cognitive/affective factor-
grouping (chunking) because an interaction essentially 
means that the whole has more effect than just the sum of 
its parts. For example, the Ground Visibility x Cloud Ceiling 
interaction found in the Low Financial Incentive group 
implied that the statistical effect of V*C > V+C.11

What this means in terms of how pilots think is that 
multiple weak factors, taken together, can sway a pilot’s 
decision. It depends on the factors involved and the rela-
tions between those factors. 

Pilots Have Varied, Complex Motivations for Take-
off Into Marginal Weather. The lack of one single, simple, 
definitive model said there was no “average pilot” here. 
Each pilot was unique. Each pilot filtered the external 
IVs (Visibility, Ceiling, Financial Incentive) through his or 
her unique personality and experience. And—because so 
many personality and situational dimensions have dem-
onstrated influence on risk taking in other venues—de-
termining exactly which factor combinations resulted in 
risky weather behavior here turned out to be difficult. 
This difficulty was exacerbated by the interaction effects 
referred to earlier. This may be an “untidy” conclusion 
but, again, it is logical and defensible.
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Specific Lower-Level Conclusions
With caveats fully in mind, the “best” quantitative 

models are summarized below (Table 8). These repre-
sent a reasoned balance between numerical performance, 
theory, and logic. 

However, to be perfectly clear, of these three, only the 
Low Incentive model approaches traditional reliability due 
to the large number of models tested. Refer to the Part 
II report for details. All full-set models had to be heavily 
discounted. First, the predictivity and R2 were roughly 
equal to what we could expect by chance from random 
number simulations (conducted in Part II). Second, those 
particular models were less theory-based and more just 
the output of stepwise regression. Stepwise regression 
produces maximum statistical significance, but operates 
mechanically without regard to experimental theory and 
logic. Third, the “best” full-set model was complex, with 
one 3-way interaction, one 2-way interaction, and three 
single factors. Complex, weakly theoretical models often 
fail to hold up on retest. Finally, there were numerous 
other models, not shown here, with practically equal 
performance.

So, if the Full Set models said anything at all, they 
supported the assertions stated previously. Specifically, a 
lot was going on inside the heads of our pilots.

Sorting the data by financial incentive had a very ben-
eficial effect on the analysis. In the Low Incentive group, 
differences in weather did seem to affect takeoff behavior. 
At least some pilots seemed to mentally operationalize 
“weather” as a synergistic interaction of variables12 (Vis-
ibility x Ceiling) whose net effect was greater than just the 
sum of parts. It is reasonable to extend this conclusion to 
include other factors as well (although specifically naming 
those other factors and their interactions would not be 
justified by these data alone).

Turning to the High Incentive group, we did not see 
many simple, straightforward effects. Money apparently 
did change some cognitive/affective processes, but it was 
not clear which were affected. Weather still mattered, but 
the effect was weaker than in the Low Incentive group. 
Moreover, as a group, pilots made very little distinction 
between the various weather conditions themselves. The 
best regression models involved the financial incentive. 
This probably meant that financial incentive interfered 
with the cognitive process of weather discrimination. 
However, an equally plausible hypothesis is that weather 
discrimination, itself, was unaffected and was just con-
sciously overridden by the motive of money.

Whatever the cause, according to their self-report, 25% 
of the pilots appeared to be immune to the financial bonus. 
Others appeared quite susceptible (43%). The rest were 
unpredictable, at least their stated financial motives did 
not match their final behavior. However, keep in mind 

that the relative proportions were specific to this group, 
and would not generalize to all pilots under all circum-
stances. What might generalize is the rough principle of 
risk susceptibility.13 But even that should be approached 
with caution. First, the results of this particular study 
suggest but do not firmly support it. Second, while there 
are clearly pilots who adhere more to a set of internal 
standards than others, we did not test all circumstances. 
Temptation is certainly domain-specific and reward-spe-
cific. For instance, suppose the bonus been $100,000 
instead of $200? Or life versus death? The point is that 
predictions generally hold true only for very specific 
sets of circumstances. Change the circumstances, and 
you may completely change the ability to predict what 
a given pilot will do.

RECOMMENDATIONS

Immediate Conclusions
We agree with Oppe (1988) and others that risk toler-

ance depends on situation specifics and a large number 
of factors. Theoretically, these results supported the idea 
that most pilots were aware of some degree of weather 
risk, but some overrode that assessment because of one 
or more other factors, for example, money.

Weather risk-susceptible pilots consisted of two groups, 
a) the small group who were not aware of the risk in the 
first place and, b) the small group who chose to fly but 
may have lacked the skill to do so flawlessly under every 
circumstance.

The first group would be fairly easy to amend. A 
small amount of PC-based weather training could be 
very helpful in dealing with pilots who have never flown 
in various types of bad weather. Such training would 
be relatively inexpensive in time and money, and could 
directly translate into lives saved. 

The second group presents a somewhat greater prob-
lem, mainly having to do with identification of individuals 
at risk for having too much self-confidence, given the skill 
they possess. We obviously do not have to be concerned 
with highly skilled pilots whose abilities always exceed the 
risks they take. The ones we worry about are those who 
have more confidence than actual skill. Yet overconfidence 
is plainly hard to measure, at least on paper. Pilots tend 
to be highly confident people to start with. So how can 
we tell which ones “talk the talk” better than they “walk 
the walk?” Paper-and-pencil methods are obviously in-
complete. And other methods (e.g., flight simulators), 
introduce their own set of problems. For example, a 
flight simulator is a non-lethal environment. Since one 
cannot actually die, exactly what risk are we measuring? 
Some pilots take such experiments dead seriously, oth-
ers less so. Some try to please the experimenter, while 
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others respond based on natural behavioral instincts. 
Finally, what we really wish we could measure is not risk 
taking per se, but inappropriate risk taking. So how do 
you penetrate the fiber of individuals to know exactly 
what their real skill level is? And, if that were possible, 
the number of pilots taking inappropriate risks is going 
to be small, so how can that be pulled out of a large 
pool of otherwise normal research participants? This a 
signal-to-noise ratio problem.

These are problems that need to be addressed. The 
optimistic viewpoint is that we do learn valuable, practical 
things from this kind of research. For instance, we now 
can guess that inexpensive, garden-variety PCs must soon 
play a pivotal role in pilot training because they can safely 
deliver certain critical kinds of flight experience for a rela-
tively small investment in time and money. This suggests 
development of a personal computer-based program that 
can be used in conjunction with inexpensive home flight 
simulators such as Microsoft Flight Simulator®.

Future Research Directions
We are still mainly at the factor-identification stage. 

We need to keep developing this comprehensive list of 
factors shown to influence inappropriate weather-related 
risk taking. As this study shows, this list of factors needs 
to include the possibility that some factors can synergis-
tically interact with others to produce an effect greater 
than each would have separately. To restate the mantra, 
“The action is in the interaction.”

Our next weather-risk study will focus on the role of 
financial incentive, since that showed the greatest reli-
ability of the three individual IVs tested in this study. We 
hope to settle the reliability issue by a relatively quick 
look at just that one predictor. Beyond that, we intend 
to explore the role of social factors (e.g. peer pressure) 
since this is also a plausible study area, well researched 
in other fields, but far less so in aviation.

One of the major obstacles to developing a Critical 
Factors List is statistical reliability. Given what we now 
know from this study about weak, multi-factor, inter-
actional pilot mental processes, this means we could be 
wrong about the influence of some of our predictor fac-
tors. The best way around this reliability problem is to 
have other researchers repeat certain studies. Replication 
enhances reliability because, if two different studies are 
merely 90% sure of a given result, together, the results 
are 100 – (100-90)*(100-90) = 99% reliable. Moreover, 
replication is cost-effective when done by university-based 
research teams using talented (inexpensive) graduate 
students. This serves both the purpose of ensuring reli-
ability of results and also trains up the next generation 
of aviation researchers.
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ENDNOTES

1 R+ is receipt of some reward. R is avoidance of some 
punishment.
2 We will use the abbreviation “uncorrected” to stand for 
“uncorrected for experiment-wise Type I error.”
3 Some critics would argue it unfair to draw such a strong 
conclusion based on anecdotal evidence taken from only 
two subjects. The logical response to that criticism is: 
a) Exploratory studies ought to make suggestions; b) 
Anecdotal evidence is usually more dependable when it 
comes from a relatively controlled experimental setting 
such as this.
4 Once again, refer to the Part II study for details.
5 Assuming a highly conservative base rate of 26/28 takeoffs 
for perfect weather, the estimated chance of getting the real 
takeoffs actually observed would be p=1184040*.0721*.937 
by expansion of the binomial—about 4 in 10 billion 
billion.
6 Expected p=145422675*.0714*.9316 ≅ 3*10-9 or about 
3 in a billion.
7 Two pilots failed to answer the buck_mot question on 
their debrief sheet, making n=28 for that analysis.
8 This was exactly the same way logistic regression op-
erationalized interactions, by multiplying the two scores 
together.
9 Logistic regression is appropriate for ordinal data as well 
as ratio-scale or categorical data.
10 To (over)simplify, Bonferroni correction basically 
involves dividing each α significance criterion value by 
the number of comparisons made (Keppel, 1982). The 
more stringent the α, the lower that p and Χ2 values 
have to be to achieve “significance.” Given too many 
models, α can become so stringent that literally nothing 
is “significant.”
11 Technically, the statistical effect of β

1
V*C > that of β

2
V 

+ β
3
C, but that does not change the basic argument.

12 It needs to be said that an “average” weather effect (the 
base rate, modelable with a constant) would also emerge as 
an artifact from logistic regression if all pilots discriminated 
solely on the basis of a VxC process alone. However, to 
be conservative, we say “some pilots” and not “all pilots” 
mentally operationalize weather as an interaction.
13 Risk is known to be domain-specific (Weber, Blais, 
& Betz, 2002). That is, a pilot who takes risks playing 
poker may be highly conservative in the air (or vice versa). 
This makes it virtually impossible to globally diagnose a 
“risk-taking personality.” Aviation risk-taking is a separate 
problem and has to be assessed separately.
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Figure 1. Fatality rates per million passenger-miles for U.S. gen-
eral aviation, domestic commercial aviation, and automotive 
transport, sample years 1990-98.  

Figure 2. Summary of raw data–the number of pilots choosing to take 
off, given that cell’s triple combination of ground visibility, cloud ceiling, 
and financial incentive. Each of the 12 cells contained five pilots.
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TABLES

1

Table 1. Personality instruments used, their meanings, and a key reference to each (see References section). 

Instrument High score implies Reference
Aviation Safety Attitude Scale high history of aviation risk behavior Hunter, 1995, 2002a, 2002b, in press
Anxiety Sensitivity Index high scores indicate high anxiety Peterson & Reiss, 1994;  Reiss et al., 1986
Balloon Analog Risk Task high risk tolerance Lejuez et al., 2002
Barratt Impusiveness Scale V10 high impulsivity Barratt, 1975
Eysenck Impulsivity Scale high impulsivity Eysenck & Eysenck, 1964,1975,1977,1985 
Hazardous Events Index high history of aviation risk behavior Hunter, 2002
Multidimensional Personality Questionnaire high degree of specified trait Patrick, Curtin, & Tellegen, 2002
Risk Orientation Questionnaire high risk tolerance Rohrmann, 2002
Sensation Seeking Scale high desire for stimulus-seeking Zuckerman, 1994

2

Table 2. Demographic data for the full data set. 

Years age Flight hrs FH past High-performance Simulated instrument
flying total 12 mo. hrs, total hrs, total

Median 1.8 23.5 183.5 80.0 5.0 25.0
mean 4.3 26.1 753.0 159.9 37.9 69.3
S.D. 7.6 8.5 2604.7 239.6 88.5 256.8

3

Table 3. Summary of regression analysis for the three 
primary independent variables. Each of the three separate 
models tested contained one IV plus a constant. 

% prediction Nagelkerke
Independent Var. p increase > constant R2

Visibility 0.11 3.4 0.06
Ceiling  0.43 0.0 0.01
Financial Incentive 0.07 3.4 0.07

4

Table 4. Summary of interactions between the 
three primary independent variables. 

% prediction Nagelkerke
Interaction p increase > constant R 2

Visibility x Ceiling 0.037 6.7 0.10
Visibility x Incentive 0.090 6.7 0.07
Ceiling x Incentive 0.053 5.0 0.09
Vis x Ceil x Incent 0.063 5.0 0.08

5

Table 5. Theory-based Weather
model (Visibility x Ceiling + Con-
stant, uncorrected values) for the 
Low Financial Incentive group mi-
nus two outliers (n=28).

Wald p Predictivity R 2

VIS x CEIL 0.008 Base:  75.0% 0.521
Constant 0.003 Model: 85.7%

6

Table 6. Effect of �Weather� (Visibility x 
Ceiling interaction) on the High Finan-
cial Incentive group. 

Wald p Predictivity R 2

VIS x CEIL 0.396 Base:  53.3% 0.033
Constant 0.604 Model: 56.7%I I I I I I I I I 
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7

Table 7. Frequency counts for High Financial Incentive pilots, 
grouped into 4 cells by Takeoff versus individual pilots� self-
stated personal financial motivation (buck_mot).

Actual frequency �2  expected freq ave. w eather
buck_mot buck_mot buck_mot

Takeoff N Y N Y N Y
N 7 6 13 4.6 8.4 13 5571 2333
Y 3 12 15 5.4 9.6 15 5667 4333

10 18 28 10 18 28 average

� � 0.062 4476

8

Table 8. Best models for full-set, Low, and High Financial Incentive sub-groups. �Best� is defined 
by a combination of high reliability, predictivity, and R2, in combination with support from logic and 
theory.

Data set Best model found Wald p Predictivity R 2
Nagel Comments

Full set Visibility x Ceiling x MPQ Aggression .001-.003 Tw o models, depending on
N=60 Actual instr. time (90 d) x $ Incentive .046-.072 75-80% w hether the referent w as

Anxiety Sensitivity Index .001 .527-.488 "instrument-rated" or "non-
Hazardous Events Index .044-.092 (base 58.3) instrument-rated".  Models
Instrument Rating (VFR vs. IFR) .029-.106 show  some effect of w eather

but suggest breaking the data
into Low  vs. High $ Incentive

Low  $ Incentive Visibility x Ceiling .008 Model show s that "Weather"
N=28 Constant .003 85.7% .521 can be defined as (Vis x Ceil )

High $ Incentive Financial Motivation (buck_mot) Many shallow  models
N=30  x Predictor P � .04 ��75% � .28 Models do not exceed chance

Constant No sig. effect of w eather
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APPENDIX A

Method of Calculation for Rate of Weather Involvement in GA Fatalities

 In the Introduction of this report, we stated “Data derived by us from National Transportation Safety Board 
statistics (1995-1997) support this assertion, showing IMC implicated in approximately 32% of GA fatalities.” Here 
is how we calculated that figure:

We started with data from the National Transportation Safety Board (NTSB) Annual review of aircraft accident 
data, U.S. general aviation, calendar years 1995-97 (the latest available year was, indeed, 1997). The figure of 90% 
GA accidents occurring in VMC was taken from the text, which claimed “More than 90 percent of accidents occur 
in visual meteorological conditions” (emphasis ours, NTSB, 1997, p. 2 used to illustrate). So we assumed that 90% 
was an estimate, but a conservative one. We then followed these steps:

• The reports state that 90% of GA accidents occur in VMC (visual meteorological conditions).
• Therefore, by deduction, (100-90) = 10% must occur in IMC (instrument meteorological conditions).
• The reports state that 68, 63, and 69% of IMC accidents during their respective years involved fatalities 

(average = 66.7%), as opposed to 16, 15, and 16% of VMC accidents, respectively (average = 15.7%).
• If 10% of accidents involve IMC, and 66.7% of these are fatal, then (10% * 66.7%) = 6.7% of overall ac-

cidents therefore involve IMC PLUS fatalities
• If 90% of accidents involve VMC, and 15.7% of these are fatal, then (90% * 15.7%) = 14.1% of overall 

accidents therefore involve VMC PLUS fatalities.
• Therefore, ((6.7 / (6.7+14.1)) = 32%) is the ratio of (fatal accidents involving IMC / total fatal accidents), 

meaning that IMC is implicated in approximately 32% of GA fatalities.

Year % GA acci- % in % of IMC acci- % of VMC
dents in VMC IMC dents fatal accidents fatal

1995 90 10 68 16
1996 90 10 63 15
1997 90 10 69 16

average 66.7 15.7

10%*66.7= 6.7 6.7 / 20.8 =
90%*15.7= 14.1 0.32

total % fatal 20.8



B1



B1

APPENDIX B

Participant Debrief Form

S # ________

q What is your own normal personal minimum for VFR visibility? ________
q Your normal personal minimum for VFR cloud ceiling ________
q Are these minimums rock-solid, or do you adjust them a little, depending on the circumstances?________
q Have you ever flown this particular route before (or a similar situation)? ________
q Did the distance you had to fly through bad weather affect your willingness to take off ? ________ (for example, 

if the distance had been greater, would you have been even less inclined to take off than you were?)
q If you were in the “high-incentive” condition, did this affect your willingness to take off? ________
q Do you think having passengers would affect your willingness to take off? (increase it ____,  no change____, 

decrease it ____)
q If you had a lot more flight hours, would that have change your willingness to take off? (increase it ____,  no 

change____, decrease it ____)
q If your flight mission had been critical (for example, delivering a human heart for surgery), would that change 

your willingness to take off? (increase it ____,  no change____, decrease it ____)
q Have you ever flown a Piper Malibu before?_____  Did this affect your willingness to take off?
q It made me more willing because I was anxious to try it out ___, 
q It didn’t matter one way or the other ___, 
q It made me less willing because I was afraid I’d make more mistakes ___
q Did the fact that this was a simulation (and not reality) affect your willingness to take off? 
q It increased willingness because 

q (a) I wanted to fly the sim___ and/or 
q (b) I knew I couldn’t really get injured in it___, 

q No, it had no effect because 
q (a) it didn’t matter to me one way or the other___
q (b) there were positives and negatives but they cancelled each other out___

q It decreased willingness because
q (a) I was unfamiliar with this particular simulator___
q (b) I didn’t want to make any mistakes in front of the experimenter___

q How economically significant was the money to you?
 1__not at all 2__a little 3__fairly significant 4__significant 5__very significant
q If you were to crash in the simulator, how embarrassed would you be?
 1__not at all 2__a little 3__fairly 4__significantly 5__extremely
q Have you ever had a bad flight experience related to weather?___If so, please describe briefly below.
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APPENDIX C

Standard z-tests (e.g. skew/[standard error of skew]) showed that the demographic data were greatly 
skewed by the presence of a small number of older pilots with, for instance, a great deal of flight experience. 
Winsorizing corrected virtually all this non-normality. Appendix D explains the factors examined.
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N 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
# Missing
Median 1.8 23.5 male priv. 50/50 183.5 80.0 35.0 5.0 3.0 0.0 25.0 10.0 5.0 2.0 1.0 0.0
Average 4.3 26.1 753.0 159.9 49.1 37.9 16.9 6.9 69.3 20.7 14.4 52.7 4.7 2.2
S.D. 7.6 8.5 2605 239.6 54.1 88.5 40.8 18.8 256.8 30.1 26.5 322.3 11.0 5.2
Max 48.25 69 20000 1200 250 560 200 125 2000 175 160 2500 75 25
Min 0.25 18 35 0 0 0 0 0 0 0 0 0 0 0
Skew 4.2 2.8 7.1 2.9 1.9 4.2 3.6 4.9 7.4 3.4 3.8 7.7 4.9 3.1
SE Skew 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31
z skew 13.67 9.07 22.95 9.47 6.05 13.51 11.57 15.84 24.13 11.15 12.29 24.86 15.90 10.09
p zskew 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Kurtosis 21.1 10.6 52.8 9.0 3.5 21.0 12.4 27.4 56.8 14.5 17.3 59.2 29.1 9.5
SE Kurt 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61
z kurt 34.8 17.5 86.8 14.8 5.7 34.5 20.4 45.1 93.3 23.9 28.4 97.4 47.8 15.5
p zkurt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Outlier(s)? yes yes yes yes yes yes yes yes yes yes yes yes yes yes
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N 59 59 57 57 57 28 56 55 47 53 50 51 46 51 40 11 55
# Missing 1 1 3 3 3 32 4 5 13 7 10 9 14 9 20 49 5
Median 4.0 2000 1 0 1 1 -1 0 1 0 0 0 3 3 3 2 0
Average 4.1 2186 0.8 0.4 0.6 0.6 -0.5 0.3 0.7 -0.2 0.2 2.7 3.2 2.3
S.D. 1.6 1213 0.7 0.6 0.5 0.6 0.5 1.3 1.2 1.3
Max 10 8000 1 1 1 1 1 1 1 1 1 1 6 5 5 5 1
Min 1 1000 0 0 0 0 -1 -1 -1 0 -1 -1 1 1 1 1 0
Skew 1.2 2.4 1.0 0.0 -1.3 0.0 0.4 0.2 0.2 0.8
SE Skew 0.31 0.31 0.32 0.32 0.35 0.34 0.33 0.33 0.37 0.66
z skew 3.75 7.77 3.08 0.02 -3.73 0.00 1.34 0.53 0.43 1.22
p zskew 0.000 0.000 0.004 0.399 0.000 0.399 0.163 0.347 0.363 0.190
Kurtosis 2.5 8.8 -0.1 -0.4 0.7 -0.1 0.4 -1.1 -1.2 0.5
SE Kurt 0.61 0.61 0.63 0.63 0.68 0.66 0.66 0.66 0.73 1.28
z kurt 4.0 14.4 -0.2 -0.6 1.0 -0.2 0.6 -1.7 -1.6 0.4
p zkurt 0.000 0.000 0.390 0.324 0.235 0.389 0.339 0.092 0.108 0.367
Outlier(s)? yes yes yes
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APPENDIX D

Complete list of factors examined

Three of these factors were not predictors, namely idnum, takeoff, and latcy. IDnum was merely the nu-
merical proxy for subject name.  Takeoff was the dependent variable. Latency was a descriptor, and could not 
be used as a discriminative predictor because maximum latency (120 minutes) was always associated with 
takeoff, anything less, with non-takeoff. Therefore, there were 83 usable predictors.

Name Description Name Description
subjnum Order in w hich S w as run asi AIS Anxiety Sensitivity Index
idnum S. ID number bis BIS-10  Barratt Impusiveness Scale total
takeoff Takeoff (yes/no) imp_plan BIS Impulsive Planning
latcy Latency (time elapsed before takeoff) imp_motr BIS Motor Impulsivity
vis Ground Visibility (statute miles) imp_cog BIS Cognitive Impulsivity
ceil_k Ceiling (in thousands of ft) impuls EIS  Eysenck Impulsivity Scale  Impulsivity
incent Financial Incentive (bonus / no bonus) ventur EIS Venturesomeness
wxsevrty Weather severity ( 1 / (Vis x Ceil) ) empath EIS Empathy
exptr Experimenter (WK or HH) hei HEI  Hazardous Events Index (Hunter)
yr_flg Year started f lying Multidimensional Personality Questionnaire
yrs_flg Years f lying wellbe MPQ Wellbeing
age Age socpot MPQ Social Potency
gender Gender achieve MPQ Achievement
type_lic License type socclose MPQ Social Closeness
inst_rtg Instrument rating (yes/no) stress MPQ Stress Reaction
fh_tot Flight hours total alienate MPQ Alienation
fh_12m FH past 12 months aggress MPQ Aggression
fh_90d FH past 90 days control MPQ Control
hp_tot High-performance aircraft hours total harmav MPQ Harm Avoidance
hp_12m HP past 12 mo tradit MPQ Traditionalism
hp_90d HP past 90 days absorpt MPQ Absorption
si_tot Simulated instrument hours total roq_c ROQ  Risk Orientation Q'naire Cautiousness
si_12m SI past 12 mo roq_p ROQ Risk Propensity
si_90d SI past 90 d sss SSS  Sensation Seeking Scale
ai_tot Actual instrument hours total anx_st STAS  State-Trait Anxiety Scale State
ai_12m AI past 12 mo anx_tr STAS Trait 
ai_90d AI past 90 d Balloon Analog Risk Task (Lejuez)
vis_min Personal visibility minimum durn_sec BART Task Duration (seconds)
ceil_min Personal ceiling minimum pumpsavg BART Average # of pumps
min_adj Adjust mins. to match the situation? pmpavglo BART Average # of pumps (low  incentive)
fln_rt Flow n this route before? pmpavgme BART Average # of pumps (med incentive)
dthruwx Did distance through the w eather matter? pmpavghi BART Average # of pumps (hi incentive)
buck_mot Was the $ bonus a motivation? (yes/no) pmpadjav BART Adjusted Ave. # of pumps
pass_mot Would passengers have been a motivation? padjavlo BART Adj. Ave (low  incentive)
fhincmot Would more flt hrs increase motivation? padjavme BART Adj. Ave (med incentive)
missnmot Was the type of mission a motivation? padjavhi BART Adj. Ave (high incentive)
mal_sub Was the type of f light simulator a motivation? pay_tot BART Total Payoff (cents)
sim_mot Was fact of being a sim (vs. reality) a motvn? pay_low BART Total Payoff (low  incentive)
simmotsb Sub-categories of sim_mot pay_med BART Total Payoff (med incentive)
buck_sig How  signif icant w as the $$ to you? pay_hi BART Total Payoff (high incentive)
crashsig Was w orrying abt crash a motivation? bang_tot BART Total Balloon Explosions
tx_mot Was traff ic a motivation? bang_low BART Balloon Explosions (low  incent)
badwx Ever had a bad w x experience? (y/n) bang_med BART Balloon Explosions (med incent)
asa Aviation Safety Attitude Scale (Hunter) bang_hi BART Balloon Explosions (high incent)
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APPENDIX E

Statistical Issues in Logistic Regression
 Outliers. Outliers are defined for our purposes here as any score greater than 3 standard deviations above or 
below the mean. Outliers can sometimes exert an almost unbelievable effect on the statistical outcome of an analysis. 
Take, for example, a distribution of ones and zeros representing Financial Incentive, one of our predictors of Takeoff. 
For the full data set, N=60, our actual raw distribution yields the following result during SPSS logistic regression:

This result says that the probability of Incentive being a significant predictor of Takeoff is .070.
Now let us change one single value in the data distribution from a “0” to a “10” to represent, say, a typographical 

error during data coding. Changing just this one value in 60 results in the following:

Suddenly we have gone from p = .070 to p =.894 in one step—by turning a single data point into a gross outlier. 
Obviously, this says a lot about the need for accurate data coding. It also says quite a bit about how outliers can affect 
an otherwise normal data distribution. Now logistic regression does not have an underlying logical assumption of 
normality (Tabachnick & Fidell, 2000). You could, for instance, use data with any relatively symmetrical distribu-
tion. But it does have problems with outliers, as this clearly demonstrates.

 The data in this study showed outliers in the demographics, where a small number of older pilots significantly 
skewed the distributions for predictors such as age, flight hours, and years flying. Without some kind of correction, 
therefore, the effect of outliers would have led us to seriously misinterpret the statistical analysis.

 Applying a data transformation (such as a square root or logarithmic function) is a common way to deal with 
outliers. A somewhat less well-known, but equally respected treatment is winsorization (Winer, 1971, pp 51-54). 
1971). In winsorization, the two most-extreme values in the distribution (the one highest and the one lowest) are 
replaced by a copy of the next most-extreme values. For example, in the distribution

0 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 99 (mean 7.23, SD 20.54)

we would replace the “0” with a “1” and the “99” with a “5.”

1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 5 (mean 3.00, SD 1.38)

Now this new distribution is still not normal because it is too flat. But it no longer has the gross outlier it once had. 
That extreme value of “99” is still represented by a relatively high value, which preserves the ordinality (rank order) 
of the scores. But notice that there was no actual change to most of the numbers. Only two values were changed, 
and one of those was a very modest change from a “0” to a “1.” Whereas, if we had applied a mathematical function 
such as a square root to shrink the “99” closer to the mean, almost all of the values would have been affected. Here 
winsorization exerts its biggest effect on the greatest offender, which is exactly how data conditioning should work. 
This illustrates how this technique can sometimes preserve the spirit and actuality of a distribution much better than 
can some of the more routinely used methods. For this reason, it was the method of choice for our data.

Variables in the Equation

.981 .541 3.287 1 .070 2.667
-.847 .398 4.523 1 .033 .429

INCENT
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: INCENT.a.

Variables in the Equation

-.027 .204 .018 1 .894 .973
-.319 .294 1.171 1 .279 .727

INCENT
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: INCENT.a.
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If a distribution has more than one outlier, say

0 0 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 47 99 (mean 9.09, SD 22.23)

we simply apply the winsorization procedure twice, to yield

1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 47 47 (mean 6.82, SD 13.06)

at stage one and

2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 5 (mean 3.18, SD 1.14)

at stage two. In this example, the two-stage winsorization affects 6 values, rather than just 2. For this reason we have 
to be careful in repeating this process too often, since it can lead to the antithetical problem of range restriction. 

 In this, study winsorization was limited to no more than 2 stages. For example, in the full data set (N=60) 16 
demographic variables were seen to have outliers > 3 SD, and therefore received either a 1- or 2-stage winsorization, 
depending on what was needed to eliminate these outliers. After treatment, all 16 variables emerged corrected to 
tolerance.

 A final point worth mentioning is that winsorization has a net result of making our statistical analysis more 
conservative. This happens precisely because the distributions’ ranges and variances contract during conditioning, 
and any time variance contracts, p-values generally contract as well. This is not true with purely ordinal statistics, 
because these calculate their value based on nothing more than rank order. But both chi-square and logistic regres-
sion do not fall into that category. While logistic regression is often touted as being distribution-free, in fact, we 
have graphically illustrated that things are a bit more complex. Outliers skew its innermost calculation of likelihood 
ratios (SPSS, 2004). However, the data conditioning process employed here allowed us to successfully treat data and 
to present p-values representing useful-yet-conservative estimates of statistical reliability.

 Correction for Familywise Error. Another important issue is the one of correcting p-values to account for the 
number of predictors examined. Most statisticians recommend some sort of correction for experimentwise Type I 
error (unwarranted rejection of the null hypothesis). Otherwise, if we do many tests, odds are that some will be 
“significant” simply by chance.

 However, we consciously chose to deviate from that standard procedure because, in an exploratory study such 
as this, such rigor, while admirable in one sense, would most certainly have the net result of too much Type II error, 
that is, failure to detect a true effect where there was one. And, while the danger of inflated experimentwise Type I 
error was fully appreciated, we also felt it made more sense to report low p-values where found, because these really 
do represent the best guess we have regarding effect.

 The ideal way to resolve the problem, of course, is to run Monte Carlo simulations to get estimates for mean 
predictivities and R2s, given specific parameters of specific models. This was done in Part II of this report. Another 
accepted approach is to replicate studies or parts of studies, using different participants. That will be done in follow-
up studies, whenever possible.
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APPENDIX F

Brief Description of Logistic Regression
 Logistic regression is a statistical technique specially constructed for use with discrete dependent variables, for 

example, Takeoff versus No Takeoff. It is a very useful technique, but it is also extremely easy to miscode, misunder-
stand, and misinterpret. The best way to understand it is through a combination of mathematics and example. 

 Regression is the search for factors that predict other factors. In this experiment, we wanted to predict the 
likelihood that an average pilot would take off into known marginal weather, given the added influence of financial 
incentive.  Three of our predictive factors (Visibility, Cloud Ceiling, and Financial Incentive) were under experimental 
control; the rest reflected either demographic or personality characteristics of each individual pilot.

 Logistic regression uses an equation to predict the outcome of an event, in this case Takeoff versus No Takeoff 
(Dreyszig, 1972; Norušis, 1999; SPSS, 2004). This equation is

  (1)

where e is the natural log (approximately 2.718), B
0
 (beta-sub-zero) represents a constant, and B

i
 is the correspond-

ing beta weight for the ith predictor, X
i
 score. Varying the values of the exponent of e produces a distinctive sigmoid 

(S-shaped) curve capable of representing probability of takeoff

Figure F1. Sample plot of the sigmoid function y=1/(1+ e-(-5 + x)), showing how the overall value of the prediction 
equation lies between zero and one. In our case, this represents the probability of a pilot taking off, 0-1 (0-100% 
chance), given some particular combination of predictor scores X

1
 through X

n
. When a given pilot’s calculated prob-

ability exceeds an predetermined cutoff level (for example, 0.5), we will predict “Takeoff,” otherwise we will predict 
“No Takeoff.”

Logistic regression has two very attractive advantages over competing statistics. First, as we mentioned, it allows 
us to make predictions. Second, it allows us to test statistical interactions between predictors. Equation 2 shows how 
this is typically implemented, showing the prediction equation with its constant B

0
, one main variable X

1
, plus one 

interaction term involving three factors B
2
, X

2
, and X

3
. Notice that the interaction term literally involves multiplying 

together the separate predictors. This is an important point to which we will presently return.

  (2)

To illustrate this numerically, suppose we tested a model where X
1 
represented a pilot’s score of 34 on the Rohrmann 

Risk Orientation Questionnaire (subscale P), and where X
2
 and X

3 
represented the interaction of Visibility x Ceiling, 

3 (miles) and 1 (feet, in thousands), respectively. In that case, the prediction equation for that individual would be

Since .428 is less than the default cutoff value of .500, we would predict that this particular pilot would not take off.

' ' . 

' ' CIJtOff \'SIU6 = 
' 1 

/ y r: .!: 
predicts No - akeo'f 

' ' 
· 1 , : 1( 

x (= sJrr ~f batros • s,:o,es) 



F2 F3

 When we run the SPSS analysis on the full data set, the program basically goes through a similar process for 
each individual, computing a set of guesses regarding each pilot’s takeoff. Some guesses will be right, others wrong. 
Then the beta weights are shifted slightly, the analysis is repeated, and the results compared to the priors. If shifting 
the betas in that direction produces improvement, the direction of shift is repeated, otherwise it is reversed. After a 
certain number of iterations, the process halts and summary tables are produced. Here is one of the summary tables 
for an actual model:

The most important numbers in this table, as far as we are concerned, are the β weights, and the significance of 
the Wald statistic (Sig). What the βs here tell us is primarily the direction of the association between a predictor and 
the outcome. Take ROQ_P, whose β is positive. That tells us that an increase in the ROQ_P score predicts an increase 
in takeoff probability. If β had been negative, an increase in the ROQ_P score would have predicted a decrease in 

takeoff probability. The magnitude of β is also important, though its interpretation is more complicated. We have to 
take into account how the predictor was scored. Since β is multiplied by the predictor score, if the predictor scores 
are large (e.g. 1000 feet altitude) then even a small β can be very influential.

The Wald significance (Wald p value) works very much like a normal statistical p value. Wald p tells us the reli-
ability of the measurement, estimating the proportion of times we would expect to find a different result, if we 
repeated the analysis a large number of times. In this particular instance, ROQ_P’s Wald p is .226—too large to be 
considered reliable.

The Constant (β0) in this analysis behaves somewhat like other predictors. However, the Constant is sometimes 
the most difficult term to interpret in a regression model. It can reflect the sample’s base rate for the dependent vari-
able. However, this depends on what other predictors happen to be in the model. If all the other predictors are “Go” 
predictors (ones with β > 0, where an increase in predictor score reflects an increase in the DV), then the Constant 
may take on a contrarian role and assume β < 0). Whereas, had all the predictors been “No-go,” with β < 0, then 
the Constant may have a β > 0. In mixed models, with both Go and No-go predictors, things could go either way. 
Therefore, interpretation of the Constant has to be approached with skill and caution.

Categorical Variables and the Use of Contrasts
The analytic usefulness of logistic regression is a big plus. What is not a plus is the meticulous care that has to go 

into coding the data, setting up the analysis, and interpreting the results. 
For one thing, the technique is susceptible to outliers, as we mentioned. Misentry of even a single data point can 

wreck an analysis.
Another serious difficulty lies in the use of categorical predictors. Although logistic regression is technically capable 

of handling both categorical and continuous variables, special care needs to be taken when using categoricals. As long 
as all variables are continuous, either ordinal or ratio-scale, no special care needs to be taken. But categoricals are 
different. This is because the program takes categoricals coded as letters and converts them internally into zeros and 
ones. For example, we had two experimenters involved in running the participants. Call them “H” and “B.” During 
the SPSS analysis, experimenter “H” is internally converted by the program into either a zero or a one, in order to 
be plugged into equation 2. This conversion introduces the opportunity for serious conceptual errors to be made if 
we are not scrupulous in coding in the data, thinking out our analysis, and interpreting the results.

To drive this idea home, let us take this example further. If, during the analysis, we fail to specify the variable 
EXPTR as categorical (which requires bringing up a dialog box and making some adjustments), then we could 
be making a large mistake. That is because SPSS has automatic defaults and will change any letter into a number, 
whether or not we understand what it is doing. So look at the equation—trying to treat “H” as “nothing” and “B” 
as “one unit of something” makes sense only in a very limited context. And, say we run a model containing an in-

Variables in the Equation

.074 .061 1.465 1 .226 1.077

.197 .095 4.325 1 .038 1.217
-3.396 1.902 3.186 1 .074 .034

ROQ_P
CEIL_K by VIS
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: ROQ_P, CEIL_K * VIS .a.
I I 
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teraction. What the mathematics actually does is eliminate the effect of ALL the predictor scores in that interaction 
term whenever it calculates a data point involving “H,” because it multiplies the other variables in that interaction 
term by zero for that data point. And this is something we might not have intended to do exactly that way. This is 
the way we do contrasts, but the point is that the program can be doing a contrast we do not know it is doing if we 
do not understand exactly what is happening mathematically.

 Looking at some actual SPSS output will make this a little clearer. Below is some output for the simple model 
EXPTR + Constant. In the first case, “H” was set to internally code as “1” and “B” as “0.” In the second case, those 
codes were reversed.

You can see that the statistical significance (Sig.) of EXPTR does not change, and that this particular variable did 
not produce a reliable effect (.593). The betas for EXPTR are the same, just with opposite sign. This is simply because 
we are logically testing one thing “A” against another thing “not A” and, because there are only two things, so “not 
A” has no degrees of freedom. But, as we would expect from the math and the iterative computational algorithm 
we talked about, the constants turn out to be different. This is because, in the first instance, “H” was exerting the 

primary mathematical effect, since B = 0, whereas B = 1 in the second. But the constant is being updated always. 
Consequently, the two models are related, and similar, but the first one is really measuring “the effect on takeoffs of 
a pilot’s being run by ‘H’,” as opposed to being run by ‘not H’ (i.e. ‘B’).” The negative beta in the first case means 
“pilots were less likely, on the whole, to take off if they were run by ‘H’ than by ‘not H’” (although recall that p is 
not reliable, so we would not ultimately assert any difference) In this case, it so happens that ‘not H’ has to mean 
“B,” but that was only because there were only two experimenters. Had there been three, we would have had to test 
a third contrast, and each would have tested primarily the effect of that one experimenter, set up consciously by us 
to code as “1.” 

Things get even more interesting when it comes to interactions involving more than one categorical variable. The 
essential logic remains the same, however: a) contrasts focus on whatever happens to be coded “1,” and b) interactions 
go to zero whenever any single term in them becomes zero. The bottom line is that we cannot simply mindlessly run 
SPSS and hope to understand the data.

Problems Associated With Logistic Regression
Like all statistics, logistic regression is not a perfect technique (Tabachnick & Fidell, 2000). Some of its weak-

nesses include

1.   Correlation does not imply causation. All regression techniques do is to establish a mathematical relation between 
the presence/absence of one thing and the presence/absence of another. But such correlation does not neces-
sarily mean, for instance, that Factor A causes Factor B. The classic counterexample is the case where Factor A 
and Factor B are both caused by Factor C. In that case, A and B still show correlation, but there is no causation 
whatsoever between A and B.

Variables in the Equation

-.288 .539 .285 1 .593 .750
-.223 .335 .443 1 .506 .800

EXPTR(1)
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: EXPTR.a.

Variables in the Equation

.288 .539 .285 1 .593 1.333
-.511 .422 1.468 1 .226 .600

EXPTR(1)
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: EXPTR.a.
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2.   Outliers can greatly skew models and parameter estimates. We demonstrated this clearly in Appendix E. Fortunately, 
this problem was easily overcome by winsorizing the data.

3.   Independence of samples is assumed. Logistic regression is basically a between-subjects technique, not for repeated 
measures gathered over time. That was not a factor in this study, however.

4.   Absence of multicollinearity is assumed. If predictors are highly correlated, they are probably measuring the same 
factor, and will not contribute much, if anything additional to a model, other than wrongly inflated significance. 
Fortunately, the models we present did not pose this problem (see Appendix G for the intercorrelation matri-
ces).

5.   The ratio of cases to model predictors is important. A common rule of thumb, seen in many textbooks, is that a 
model should contain no more than one predictor per 10 cases (e.g., per 10 pilots). If a constant is used, this 
should be counted as one predictor However, we noticed an ancillary problem during this analysis, namely

6.   The case-to-predictor ratio issue extends to the number of predictors measured before analysis is commenced. This is 
discussed in greater depth below, and in the Part II report.

Problems Associated With Too Many Predictors in Forward Stepwise Logistic Regression
At some point, we had the intuition that simply trying to examine too many predictors in our primary technique 

of forward stepwise regression could introduce a combinatorial problem. That theoretical problem is easiest illustrated 
using our actual situation. We started with 83 candidate predictors, some of which were eventually eliminated due 
to reasons such as having missing values or being discrete (which often led to unwieldy combinations of contrasts). 
So, in the end, we looked at roughly 60 predictors.

Now, consider the following deductive logic: Suppose you were trying to model some data taken from 30 pilots, 
upon whom you had 60 measurements (predictors) each. This would correspond to, say, our Low Financial Incentive 
group. Then the rule of thumb we mentioned above in Point 5 suggests that all such models should have no more 
than 30/10 = 3 predictors. So far, so good.

The problem comes when we consider random numbers. Suppose every one of our predictors was simply “noise,” 
taken randomly from a Gaussian (normal, bell-shaped) distribution of numbers.  Given that the logistic regression 
prediction equation is basically

  (1)

notice how the exponent term –((β
0
 +) β

1
X

1
...) is really a sum. It will be the sum of our predictors (each weighted). 

That means that, whatever the actual numbers are for each pilot’s predictor scores, we are going to weight them, 
then add them up to form a total, which will then be plugged into Eq. 1. So what are the chances that, given noth-
ing but random numbers, SPSS will ultimately end up finding the precise set of β weights such that the Equation 
1 turns out greater than 0.5 for pilots who subsequently took off, versus a predicted score of less than 0.5 for those 
who did not?

Shockingly, the answer is that it is highly likely. We verified this by running Monte Carlo simulations, a standard 
technique in statistics. Using normal random number generation with µ (mu, mean) of 5 and σ (sigma, standard 
deviation) of 1, we were easily able to duplicate results such as the following:

This illustrates that SPSS essentially “made sense out of nonsense.” It summed the three random pseudo-predictor 
scores for each pilot, shown by the three jagged curves, multiplying each score by the β weights it derived, inserted 
them into Equation 1 and came up with the much-more regular solid “Prediction Equation” line. Notice how closely 
that matched the thick, dashed “Takeoff” line representing a dependent variable score of 1 for a takeoff and 0 for a 
non-takeoff. The three points where those two curves did not closely correspond are labeled as “error.” Since 27 of 
the 30 cases were “predicted” correctly, this model’s predictivity was .90.
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Why is this? Well, look at it from the model’s point of view. In forward stepwise regression, the software first 
chooses one predictor to enter into the model, then a second, a third, and so forth. With 60 predictors, it has 60 
candidates for the first choice, 59 for the second, 58 for the third, and so on. Thus, in a three-single predictor model, 
there are 60*59*58/(3*2*1) = 34,220 possible combinations,1 not even counting interactions. What is happening is 
that, given such a huge number of combinations, at least one is highly likely to form a highly “predictive” sum, even 
though, purely taken individually, none of the individual scores has any meaning whatsoever.

We did 100 Monte Carlo simulations for each of our low- and high-incentive groups, with and without a constant 
in the model. While this was well under the usual standard of 1000-10000 or so simulations per condition, doing 
each simulation was quite tedious, and these 400 runs did have sufficient reliability to illustrate our basic points.

Here we see that the proportion of takeoffs matters. Noise models with a proportion of takeoffs close to .5 show 
lower predictivity and Nagelkerke R2 than ones with a proportion of takeoff equal to .3. But, overall, predictivities 
were still in the 70-90% range, and R2s in the 40-70% range for these random-number models.

Evaluation of the Meaningfulness of Our Data
So how reliable were the conclusions for this Part I report? 

The method used to derive these estimates is detailed in the companion report Pilot willingness to take off into 
marginal weather, Part II: Antecedent overfitting with forward stepwise logistic regression.
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error
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Predictivity Nagel R2 Predictivity Nagel R2

�MonteCarlo 80.4 0.36 76.3 0.48
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�ActualData 85.7 0.52 75 0.28
� estimated 0.16 0.08 NS NS

1 The reason for the denominator is that the order of terms in the model makes no difference. SPSS logistic treats “ABC” the same as “ACB,” 
“BAC,” “BCA,” “CAB,” and “CBA”—three degrees of freedom for the first choice, two for the second, and one for the last.
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To summarize, the .95 confidence intervals around the predicted means (CI .95) imply that any model exceeding 
these estimates for predictivity and R2 is highly likely to be a better-than-chance model. Confidence intervals are a 
standard approach used in many statistics.

The full data set and high incentive models derived from real pilots’ data in the current study did not differ 
significantly from what could be expected from random number simulations. That is why we limited our primary 
observations to high-level conclusions and the Low Incentive data. The real-pilots’ low-incentive 85.7% predictivity 
did exceed the random-generated Monte Carlo mean of 80.4%, although it did not top the estimate of 89% for the 
.95 CI. Their Nagelkerke R2 of .52 considerably bested the Monte Carlo mean of .36 and came close to meeting 
the .95 CI of .59. So, judging from the Monte Carlo scatterplots (shown in Part II), reliability for the low incentive 
n=28 experimental data was roughly α =.16 for predictivity and α =.08 for R2.

As said previously, for the purposes of a preliminary report such as this, it is often wiser to be somewhat relaxed 
in reporting results than we would be later on in the research process. This is because of the Type I-Type II error 
tradeoff, that is, where excessive stringency in setting significance levels results in a lower number of false positive 
results but strictly at the cost of a higher number of missed results. In other words, at first the strategy involves going 
for breadth of findings. The small number of results that fail to be reliable will be discovered and eliminated as other 
studies cross check results presented here. 
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APPENDIX G
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Years flying

Flight hrs tot

FH past 12 mo

FH past 90 d

Hi perf hrs tot

HP past 12 mo

HP past 90 d

Simd instr hr tot
SI past 12 mo

Act inst hr tot

AI past 12 mo

BIS Impulsive PlanningBIS Motor Impulsivity
BIS Cognitive ImpulsivityBarratt Impulsiveness Scale total
EIS Impulsivity

EIS Venturesomeness
MPQ Stress Reaction
MPQ Control

0.718
0.702

0.753
0.685

0.850
0.696
0.768

0.682
0.791

0.841
0.914

0.714
0.727

0.873
0.730

0.808
0.668

0.662
0.727

0.696
0.873

0.676
0.697

0.753
0.697

0.660
-0.782

0.676
0.682

0.661

Intra-B
AR

T
correlations

These R
s reflect the relatively

young m
edian age of the pilots

Intra-BIS
correlations

trol

STAI State Anxiety
BART pumps (ave.)
BART pumps (ave. low payoff)BART pumps (ave. med. payoff)BART pumps (ave. high payoff)BART pumps adjusted ave.BART pumps adj. ave.(low)BART pumps adj. ave.(med)BART pumps adj. ave.(high)BART ave. payoff (cents)BART balloon explosions (total)C

orrelations
 (N

=30 in all 
cases)

Age
FH

 past 12 m
o

FH
 past 90 d

H
P past 12 m

o
H

P past 90 d
Sim

d instr hr tot
SI past 90 d
Act inst hr tot
AI past 12 m

o
AI past 90 d
BIS C

ognitive Im
pulsivity

Barratt Im
pulsiveness Scale total

Eysenck Im
pulsivity Scale Im

pulsivity
M

P
Q

 C
ontrol

R
ohrm

ann C
autiousness

SSS
 Sensation Seeking Scale

0.740
STAI Trait Anxiety

0.825
BAR

T pum
ps (ave. low

 payoff sched)
0.934

BAR
T pum

ps (ave. m
ed. payoff)

0.875
0.829

BAR
T pum

ps (ave. high payoff)
0.981

0.778
0.930

0.880
BAR

T pum
ps adjusted ave.

0.800
0.959

0.786
BAR

T pum
ps adjusted ave.(low

)
0.889

0.956
0.825

0.924
BAR

T pum
ps adjusted ave.(m

ed)
0.842

0.809
0.968

0.875
0.831

BAR
T pum

ps adjusted ave.(high)
0.672

0.743
BAR

T ave. payoff (low
 schedule)

0.800
BAR

T ave. payoff (m
ed)

0.750
BAR

T ave. payoff (high)
0.919

0.815
0.859

0.741
0.890

0.737
0.843

0.721
BAR

T balloon explosions (total)
0.705

0.900
0.788

0.808
BAR

T balloon explosions (low
 sched)

0.793
0.692

0.835
0.791

0.653
0.803

0.899
BAR

T balloon explosions (m
ed)

0.797
0.793

0.883
0.801

0.851
0.839

0.786
BAR

T balloon explosions (high)

Intercorrelation m
atrix, Pearson R

, all variables w
ith significance p < .0001 (equivalent to R

2 > .44), Low
 Financial Incentive group (N

=30). N
ote that m

ost of 
the highly significant correlations have very sim

ple explanations
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Pearson Rs, variables with significance p < .0001 (equivalent to .44 ≤ R2 ≤ .61) whose explanation is not obvi-
ous simply because they are correlated by their very nature (e.g. the various measures calculated from BART). The 
upshot here is that a) Each of these correlations is perfectly logical, and; b) Even this small number of correlations 
involves less than half the variance. That means that each instrument presumably measured different factors for the 
most fact, which was as it should be.

BI
S

Im
pu

ls
iv

e
Pl

an
ni

ng
EI

S
Im

pu
ls

iv
ity

EI
S

Ve
nt

ur
es

om
en

es
s

M
PQ

St
re

ss
R

ea
ct

io
n

M
PQ

C
on

tro
l

ST
AI

St
at

e
An

xi
et

y

Non-Evident Correlations 
where R 2 >.44  (N=30 in all cases)

0.660 Eysenck Impulsivity Scale Impulsivity
-0.782 MPQ Control

0.676 Rohrmann Cautiousness
0.682 Sensation Seeking Scale

0.661 0.740 STAI Trait Anxiety
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APPENDIX H

Predictor significances for the full data set (N=60), showing the reliability (expressed by the Wald p-value) of in-
dividual-predictor models (plus Constant) in logistic regression analysis with Takeoff as the dependent variable. Here 
each model included just one predictor, plus a constant. Subject ID is an identifier, not a predictor, and Latency is 
a descriptor, hence these lack p-values. 

These predictors generally show very low reliability, with the exception of those highlighted in gray. However, 
of those, we should exclude all but incent and ventur from further consideration, due to high numbers of missing 
values (MV) for the other three. Note that the reference category for lic_type was “Private” (N=39), so p expresses 
the analysis “Private versus All Other Categories.” No individual category had a p of < .12 in any case.

Description Name Sig. g MVs Description Name Sig.
Order in w hich S. w as run runorder 0.982 Aviation Safety Attitude scale asa 0.651
Subject ID# idnum Anxiety Sensitivity Index, total score asi 0.143
Takeoff  (Y/N) takeoff Barratt Impulsiveness Scale (BIS-10)--Impulsive Planning scale imp_plan 0.902
Latency  (minutes) latcy BIS--Motor Impulsivity scale imp_motr 0.960
Visibility vis 0.113 BIS-Cognitive Impulsivity scale imp_cog 0.886
Ceiling ceil 0.433 BIS--total score bis 0.896
Incentive incent 0.070 Eysenck Impulsivity Scale (EIS)--Impulsiveness scale impuls 0.705
Experimenter exptr 0.593 EIS--Venturesomeness scale ventur 0.088
Yr started f lying yr_flg 0.785 EIS--Empathy scale empath 0.277
Years f lying, total yrs_flg 0.966 2 Hazardous Events Index hei 0.560

age 0.653 1 Multidimensional Personality Questionnaire, Brief Form (MPQ-BF)
gender 0.461 MPQ--Wellbeing scale w ellbe 0.870

Type of License type_lic 0.612 MPQ--Social Potency scale socpot 0.468
Instrument Rating inst_rtg 0.193 MPQ--Achievement scale achieve 0.492
Total f light hours fh_tot 0.410 2 MPQ--Social Closeness scale socclose 0.290
Flthrs past year fh_12m 0.536 2 MPQ--Stress Reaction scale stress 0.528
Flthrs past 90 days fh_90d 0.444 1 MPQ--Alienation scale alienate 0.677
High-performance A/C, tot hrs hp_tot 0.476 2 MPQ--Aggression scale aggress 0.248
HP last 12 mo hp_12m 0.287 2 MPQ--Control scale control 0.540
HP last 90 days hp_90d 0.151 2 MPQ--Harm Avoidance scale harmav 0.614
Simulated instrument hrs total si_tot 0.440 2 MPQ--Traditionalism scale tradit 0.657
Sim hr last 12 mo si_12m 0.239 2 MPQ--Absorption scale absorpt 0.879
Sim hr last 90 d si_90d 0.235 2 Rohrmann Risk Orientation Questionnaire--Cautiousness scale roq_c 0.868
Actual instrument hrs, total ai_tot 0.467 2 Rohrmann Risk Orientation Questionnaire--Risk Propensity scale roq_p 0.225
AI last 12 mo ai_12m 0.776 2 Sensation-Seeking Scale sss 0.886
AI last 90 d ai_90d 0.868 2 State-Trait Anxiety Inventory--State anx_st 0.853
Personal visibility minimum vis_min 0.386 2 1 State-Trait Anxiety Inventory--Trait anx_tr 0.736
Personal ceiling minimum ceil_min 0.955 2 1 Balloon Analogue Risk Task (BART)--test duration durn_sec 0.565
Do you adjust minima? min_adj 0.398 3 BART--average pumps pumpsavg 0.335
Flow n this route before? fln_rt 0.427 3 BART--average pumps, low -payoff condition pmpavglo 0.465
Distance through w x imp? dthruw x 0.813 3 BART--average pumps, medium-payoff condition pmpavgm 0.630
$ bonus motivating? (Hi Incent only)buck_mot 0.071 32 BART--average pumps, high-payoff condition pmpavghi 0.198
Passengers change TO w illingness pass_mot 0.837 4 BART--adjusted average pmpadjav 0.373
More flt hrs change TO w illingness?fhincmot 0.893 5 BART--adjusted average, low -pay condn padjavlo 0.782
Mission-critical chg. w -ness? missnmot 0.020 13 BART--adjusted average, med-pay condn padjavme 0.868
Flow n Malibu chg w -ness? mal_sub 0.840 10 BART--adjusted average, high-pay condn padjavhi 0.207
Being a simulator chg w -ness? sim_mot 0.127 9 BART--total payoff (cents) pay_tot 0.790
...more specif ically (re prev Q) simmotsb 0.138 14 BART--total payoff, low -pay cond'n pay_low 0.979
How  signif icant w as the $ to you? buck_sig 0.164 9 BART--total payoff, med-pay cond'n pay_med 0.630
Would crash embarrass you? crashsig 0.048 20 BART--total payoff, high-pay cond'n pay_hi 0.304
How  much did you consider traff ic?tx_mot 0.919 49 BART--total balloon explosions bang_tot 0.259
Ever had a bad w x experience? badw x 0.318 5 BART--explosions, low -pay cond'n bang_low 0.422

BART--explosions, med-pay cond'n bang_med 0.325
BART--explosions, high-pay cond'n bang_hi 0.305

-
-
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Description Name Sig. g MVs Description Name Sig.
Order in w hich S. w as run runorder 0.675 Aviation Safety Attitude scale asa 0.645
Subject ID# idnum Anxiety Sensitivity Index, total score asi 0.127
Takeoff  (Y/N) takeoff Barratt Impulsiveness Scale (BIS-10)--Impulsive Planning scale imp_plan 0.615
Latency  (minutes) latcy BIS--Motor Impulsivity scale imp_motr 0.957
Visibility vis 0.064 BIS-Cognitive Impulsivity scale imp_cog 0.398
Ceiling ceil 0.691 BIS--total score bis 0.562
Incentive incent Eysenck Impulsivity Scale (EIS)--Impulsiveness scale impuls 0.394
Experimenter exptr 0.261 EIS--Venturesomeness scale ventur 0.713
Yr started f lying yr_flg EIS--Empathy scale empath 0.881
Years f lying, total yrs_flg 0.470 2 Hazardous Events Index hei 0.221

age 0.942 1 Multidimensional Personality Questionnaire, Brief Form (MPQ-BF)
gender 0.815 MPQ--Wellbeing scale w ellbe 0.896

Type of License type_lic 0.999 MPQ--Social Potency scale socpot 0.269
Instrument Rating inst_rtg 0.873 MPQ--Achievement scale achieve 0.574
Total f light hours fh_tot 0.591 1 MPQ--Social Closeness scale socclose 0.590
Flthrs past year fh_12m 0.911 2 MPQ--Stress Reaction scale stress 0.544
Flthrs past 90 days fh_90d 0.907 MPQ--Alienation scale alienate 0.787
High-performance A/C, tot hrs hp_tot 0.347 2 MPQ--Aggression scale aggress 0.673
HP last 12 mo hp_12m 0.713 2 MPQ--Control scale control 0.930
HP last 90 days hp_90d 0.328 2 MPQ--Harm Avoidance scale harmav 0.641
Simulated instrument hrs total si_tot 0.995 MPQ--Traditionalism scale tradit 0.203
Sim hr last 12 mo si_12m 0.588 2 MPQ--Absorption scale absorpt 0.961
Sim hr last 90 d si_90d 0.982 2 Rohrmann Risk Orientation Questionnaire--Cautiousness scale roq_c 0.345
Actual instrument hrs, total ai_tot 0.482 2 Rohrmann Risk Orientation Questionnaire--Risk Propensity scale roq_p 0.637
AI last 12 mo ai_12m 0.753 1 Sensation-Seeking Scale sss 0.888
AI last 90 d ai_90d 0.512 1 State-Trait Anxiety Inventory--State anx_st 0.484
Personal visibility minimum vis_min 0.523 State-Trait Anxiety Inventory--Trait anx_tr 0.393
Personal ceiling minimum ceil_min 0.487 1 Balloon Analogue Risk Task (BART)--test duration durn_sec 0.864
Do you adjust minima? min_adj 0.244 BART--average pumps pumpsav 0.341
Flow n this route before? fln_rt 0.265 BART--average pumps, low -payoff condition pmpavglo 0.552
Distance through w x imp? dthruw x 0.627 BART--average pumps, medium-payoff condition pmpavgm 0.462

BART--average pumps, high-payoff condition pmpavgh 0.234
Passengers change TO w illingnesspass_mot 0.175 1 BART--adjusted average pmpadjav 0.460
More flt hrs change TO w illingness fhincmot 0.204 BART--adjusted average, low -pay condn padjavlo 0.975
Mission-critical chg. w -ness? missnmot 0.024 7 BART--adjusted average, med-pay condn padjavme 0.768
Flow n Malibu chg w -ness? mal_sub 0.854 4 BART--adjusted average, high-pay condn padjavhi 0.186
Being a simulator chg w -ness? sim_mot 0.910 3 BART--total payoff (cents) pay_tot 0.749
...more specif ically (re prev Q) simmotsb 0.408 7 BART--total payoff, low -pay cond'n pay_low 0.836

BART--total payoff, med-pay cond'n pay_med 0.990
Would crash embarrass you? crashsig 0.337 12 BART--total payoff, high-pay cond'n pay_hi 0.365
How  much did you consider traff ic tx_mot 0.422 26 BART--total balloon explosions bang_tot 0.272
Ever had a bad w x experience? badw x 0.472 BART--explosions, low -pay cond'n bang_low 0.458

BART--explosions, med-pay cond'n bang_me 0.403
BART--explosions, high-pay cond'n bang_hi 0.229

APPENDIX I

 Predictor significances for the Low-Incentive data set (N=30), showing the reliability (Wald p-value) of indi-
vidual-predictor models (plus Constant) in logistic regression analysis with Takeoff as the dependent variable. The 
reference category on type_lic is “Private,” on simmotsb it is “Didn’t matter.” Keep in mind that the SPSS reference 
category is the one being weighted “0” in the logistic regression prediction equation.
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APPENDIX J

Description Name Sig. g MVs Description Name Sig.
Order in which S. was run runorder 0.612 Aviation Safety Attitude scale asa 0.700
Subject ID# idnum Anxiety Sensitivity Index, total score asi 0.910
Takeoff  (Y/N) takeoff Barratt Impulsiveness Scale (BIS-10)--Impulsive Planning scale imp_plan 0.809
Latency  (minutes) latcy BIS--Motor Impulsivity scale imp_motr 0.820
Visibility vis 0.655 BIS-Cognitive Impulsivity scale imp_cog 0.595
Ceiling ceil 0.466 BIS--total score bis 0.829
Incentive incent N/A Eysenck Impulsivity Scale (EIS)--Impulsiveness scale impuls 0.668
Weather severity wxsvrty 0.364 EIS--Venturesomeness scale ventur 0.085
Experimenter exptr 0.080 EIS--Empathy scale empath 0.296
Years flying, total yrs_flg 0.451 Hazardous Events Index hei 0.976

age 0.420 1 Multidimensional Personality Questionnaire, Brief Form (MPQ-BF)
gender 0.476 MPQ--Wellbeing scale wellbe 0.980

Type of License type_lic 0.933 MPQ--Social Potency scale socpot 0.947
Instrument Rating inst_rtg 0.069 MPQ--Achievement scale achieve 0.735
Total flight hours fh_tot 0.420 2 MPQ--Social Closeness scale socclose 0.117
Flthrs past year fh_12m 0.385 1 MPQ--Stress Reaction scale stress 0.980
Flthrs past 90 days fh_90d 0.192 MPQ--Alienation scale alienate 0.304
High-performance A/C, tot hrs hp_tot 0.333 MPQ--Aggression scale aggress 0.267
HP last 12 mo hp_12m 0.090 2 MPQ--Control scale control 0.622
HP last 90 days hp_90d 0.164 2 MPQ--Harm Avoidance scale harmav 0.337
Simulated instrument hrs total si_tot 0.105 MPQ--Traditionalism scale tradit 0.079
Sim hr last 12 mo si_12m 0.036 MPQ--Absorption scale absorpt 0.823
Sim hr last 90 d si_90d 0.130 1 Rohrmann Risk Orientation Questionnaire--Cautiousness scale roq_c 0.240
Actual instrument hrs, total ai_tot 0.625 1 Rohrmann Risk Orientation Questionnaire--Risk Propensity scale roq_p 0.325
AI last 12 mo ai_12m 0.481 1 Sensation-Seeking Scale sss 0.937
AI last 90 d ai_90d 0.201 2 State-Trait Anxiety Inventory--State anx_st 0.161
Personal visibility minimum vis_min 0.519 1 State-Trait Anxiety Inventory--Trait anx_tr 0.512
Personal ceiling minimum ceil_min 0.726 1 1 Balloon Analogue Risk Task (BART)--test duration durn_sec 0.437
Do you adjust minima? min_adj 0.999 3 BART--average pumps pumpsavg 0.703
Flown this route before? fln_rt 0.485 3 BART--average pumps, low-payoff condition pmpavglo 0.453
Distance through wx imp? dthruwx 0.638 3 BART--average pumps, medium-payoff condition pmpavgme 0.812
$ bonus motivating? (Hi Incent only) buck_mot 0.071 2 BART--average pumps, high-payoff condition pmpavghi 0.688
Passengers change TO willingness? pass_mot 0.323 3 BART--adjusted average pmpadjav 0.682
More flt hrs change TO willingness? fhincmot 0.491 5 BART--adjusted average, low-pay condn padjavlo 0.563
Mission-critical chg. w-ness? missnmot 0.178 6 BART--adjusted average, med-pay condn padjavme 0.835
Flown Malibu chg w-ness? mal_sub 0.728 6 BART--adjusted average, high-pay condn padjavhi 0.874
Being a simulator chg w-ness? sim_mot 0.159 6 BART--total payoff (cents) pay_tot 0.679
...more specifically (re prev Q) simmotsb 0.139 7 BART--total payoff, low-pay cond'n pay_low 0.868
How significant was the $ to you? buck_sig 0.126 6 BART--total payoff, med-pay cond'n pay_med 0.999
Would crash embarrass you? crashsig 0.135 8 BART--total payoff, high-pay cond'n pay_hi 0.995
How much did you consider traffic? tx_mot 0.999 23 BART--total balloon explosions bang_tot 0.503
Ever had a bad wx experience? badwx 0.679 5 BART--explosions, low-pay cond'n bang_low 0.482

BART--explosions, med-pay cond'n bang_med 0.533
BART--explosions, high-pay cond'n bang_hi 0.783

 High Incentive data, N=30, single variable (plus Constant) models.  Reference category for type_lic is �Private� 
(no individual p < .187).  Reference category for simmotsb is �Positives and negatives cancel� (no individual p < 
.072).
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Interactions  vis x ceil x factor below
Name MV Sig. Ref Sig. Name Sig.

runorder 0.189 imp_motr 0.381
imp_cog 0.253

exptr 0.134 B H 0.042 bis 0.392
yrs_flg 0.604 impuls 0.418
age 0.655 ventur 0.252
gender 0.942 M F 0.444 empath 0.579
type_lic 0.788 Private hei 0.466
inst_rtg 0.375 N Y 0.131 w ellbe 0.482
fh_tot 0.282 socpot 0.512
fh_12m 0.559 achieve 0.606
fh_90d 0.473 socclose 0.938
hp_tot 0.380 stress 0.362
hp_12m 0.230 alienate 0.123
hp_90d 0.717 aggress 0.083
si_tot 0.244 control 0.772
si_12m 0.379 harmav 0.764
si_90d 0.802 tradit 0.054
ai_tot 0.305 absorpt 0.896
ai_12m 0.445 roq_c 0.201
ai_90d 0.177 roq_p 0.345
vis_min 1 0.308 sss 0.474
ceil_min 1 0.398 anx_st 0.179
min_adj 3 0.101 N Y 0.997 anx_tr 0.235
fln_rt 3 0.363 N Y 0.093 durn_sec 0.207
dthruwx 3 0.859 N Y 0.961 pumpsavg 0.419
buck_mot 2 0.052 N Y 0.137 pmpavglo 0.462
pass_mot 3 0.388 pmpavgme 0.568
fhincmot 5 0.194 pmpavghi 0.281
missnmot 6 0.291 pmpadjav 0.372
mal_sub 6 0.754 padjavlo 0.461
sim_mot 6 0.211 padjavme 0.519
simmotsb 7 0.316 "+/- cancel" padjavhi 0.314
buck_sig 6 0.523 pay_tot 0.453
crashsig 8 0.227 pay_low 0.427
tx_mot 23 0.653 pay_med 0.568
badwx 5 0.806 N Y 0.658 pay_hi 0.398

bang_tot 0.438
asa 0.480 bang_low 0.553
asi 0.288 bang_med 0.571
imp_plan 0.643 bang_hi 0.278

 High Incentive group only, N = 30.  Reference category for type_lic was �Private,� and results reflect composite 
significance for all license types.  In no case was p < .436 for license type   Reference category for simmotsb was 
�Positives and negatives cancelled.�  We were unable to coerce SPSS into defining the reference category as �Didn�t 
matter.�  SPSS apparently sorts categoricals into frequency counts and assigns its �First� and �Last� categories 
according to frequency, rather than to the order in which categories are coded.  In other words, recoding makes no 
difference.  And, since its only options for assigning reference are �First� or �Last,� it was impossible to equilibrate 
the analysis of simmotsb with its Low Incentive counterpart.  In any event, the composite significance of simmotsb
and all its components were all  > .165, so the matter is irrelevant 
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Interactions  buck_mot x factor below
Name MV Sig. Ref Sig. Name MV Sig. Ref Sig.

runorder 2 0.078 N Y 0.144 asa 2 0.066 N Y 0.061
vis 2 0.060 N Y 0.125 asi 2 0.083 N Y 0.187
ceil 2 0.064 N Y 0.112 imp_plan 2 0.055 N Y 0.053
exptr 2 0.064 NH YH 0.916 imp_motr 2 0.049 N Y 0.051

0.877 NB YB 0.068 imp_cog 2 0.048 N Y 0.080
yrs_flg 2 0.531 N Y 0.253 bis 2 0.041 N Y 0.050
age 2 0.129 N Y 0.083 impuls 2 0.020 N Y 0.101
gender 2 0.469 NM YM 0.706 ventur 2 0.021 N Y 0.139

0.030 NF YF 0.071 empath 2 0.200 N Y 0.120
type_lic 2 0.974 NP YP 0.999 hei 2 0.301 N Y 0.194
inst_rtg 2 0.811 NN YN 0.066 w ellbe 2 0.104 N Y 0.135

0.047 NY YY 0.877 socpot 2 0.116 N Y 0.167
fh_tot 2 0.231 N Y 0.134 achieve 2 0.045 N Y 0.069
fh_12m 2 0.670 N Y 0.225 socclose 2 0.321 N Y 0.061
fh_90d 2 0.904 N Y 0.253 stress 2 0.181 N Y 0.227
hp_tot 2 0.897 N Y 0.152 alienate 2 0.156 N Y 0.527
hp_12m 2 0.860 N Y 0.103 aggress 2 0.127 N Y 0.568
hp_90d 2 0.649 N Y 0.070 control 2 0.363 N Y 0.248
si_tot 2 0.917 N Y 0.113 harmav 2 0.801 N Y 0.088
si_12m 2 0.200 N Y 0.244 tradit 2 0.053 N Y 0.411
si_90d 2 0.230 N Y 0.728 absorpt 2 0.027 N Y 0.067
ai_tot 2 0.315 N Y 0.190 roq_c 2 0.084 N Y 0.166
ai_12m 2 0.107 N Y 0.246 roq_p 2 0.032 N Y 0.058
ai_90d 2 0.156 N Y 0.700 sss 2 0.064 N Y 0.080
vis_min 2 0.084 N Y 0.052 anx_st 2 0.022 N Y 0.138
ceil_min 2 0.387 N Y 0.137 anx_tr 2 0.050 N Y 0.062
min_adj 3 0.007 NN YN 0.228 durn_sec 2 0.122 N Y 0.336

0.999 NY YY 0.999 pumpsavg 2 0.063 N Y 0.044
fln_rt 3 0.030 NN YN 0.999 pmpavglo 2 0.032 N Y 0.039

0.707 NY YY 0.999 pmpavgme 2 0.095 N Y 0.038
dthruwx 3 0.092 NN YN 0.999 pmpavghi 2 0.095 N Y 0.075

0.684 NY YY 0.825 pmpadjav 2 0.070 N Y 0.044
pass_mot 4 0.169 N Y 0.499 padjavlo 2 0.039 N Y 0.029
fhincmot 5 0.256 N Y 1.000 padjavme 2 0.132 N Y 0.039
missnmot 6 0.477 N Y 0.999 padjavhi 2 0.122 N Y 0.083
mal_sub 6 0.945 N Y 0.503 pay_tot 2 0.059 N Y 0.043
sim_mot 6 0.251 N Y 1.000 pay_low 2 0.042 N Y 0.029
simmotsb 7 0.442 N Y 0.168 pay_med 2 0.107 N Y 0.042
buck_sig 6 0.031 N Y 0.120 pay_hi 2 0.083 N Y 0.071
crashsig 8 0.124 N Y 0.387 bang_tot 2 0.080 N Y 0.054
tx_mot 23 0.999 N Y 0.999 bang_low 2 0.047 N Y 0.052
badwx 5 0.840 NN YN 0.414 bang_med 2 0.120 N Y 0.082

0.143 NY YY 0.212 bang_hi 2 0.153 N Y 0.077

High Incentive, N = 30.  Reference category for type_lic is �Private.�  Reference category for simmotsb is �Positives 
and negatives cancel.� The reason for most of the missing values here is that buck_mot had two itself, so each 
analysis therefore automatically had to reflect at least these two. 
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	THE INFLUENCE OF VISIBILITY, CLOUD CEILING, FINANCIAL INCENTIVE, AND PERSONALITY FACTORS ON GENERAL AVIATION PILOTS’ WILLINGNESS TO 
	THE INFLUENCE OF VISIBILITY, CLOUD CEILING, FINANCIAL INCENTIVE, AND PERSONALITY FACTORS ON GENERAL AVIATION PILOTS’ WILLINGNESS TO 
	TAKE OFF INTO MARGINAL WEATHER, PART I: 
	THE DATA AND PRELIMINARY CONCLUSIONS
	INTRODUCTION
	In the 1934 movie Bright Eyes, a six year-old Shirley Temple plays a brave little orphan, ever-cheerful and indomitable in the face of fell circumstance. Her godfather/pilot, James Dunn, desperately wants to adopt the stalwart girl, but lacks the money for legal fees. So he accepts a job no other pilot will dare, delivering cargo through a hair-raising storm. In the end, love conquers adversity, and everyone lives happily ever after.
	-

	This movie is far more than fluff. It makes a point critical to aviation psychology, namely that people take risks that seem to defy logic. They have their reasons; we may just not see them right away.
	We know that some pilots take risks with weather, the question is why. U.S. general aviation (GA) typically averages far higher accident and fatality rates than both commercial aviation and automotive transport. Both in relative and absolute numbers, more people die from accidents in GA than in commercial aviation. Yet, GA safety research invariably receives less attention than its higher-profile commercial aviation counterpart. Figure 1 illustrates the relative fatality rates. 
	In this sample, GA averages a fatality rate 223 times higher per-passenger-mile than commercial aviation. Data were derived by us from National Transportation Safety Board (2002, Tables 10, 6) and U.S. Bureau of Transportation Statistics (2001, Tables 1-31, 2-1). Fatalities were simply divided by official estimates of total miles flown. NTSB data exclude fatalities due to terrorism and include those due to collateral damage (e.g., bystanders hit by debris).
	-

	What are the factors that contribute to this higher fatality rate for GA? A leading candidate is adverse weather, technically known as flight into instrument meteorological conditions (IMC). Data derived by us from National Transportation Safety Board statistics (1995-1997) support this assertion, showing IMC implicated in approximately 32% of GA fatalities (Appendix A details the derivation). Many of these inadvertent violations happened during flight-into-IMC when pilots rated only for visual flight rules
	-
	-

	A number of authors have reviewed and investigated external (environmental) and internal (perceptual/cognitive) factors leading to weather-related decision making errors (Adams, Koonce, & Hwoschinsky, 2002; Hunter, 2002a,b; O’Hare, 1990; O’Hare & Owen, 1999; O’Hare, Chalmers, & Scuffham, 2003; Wiegmann, Goh, & O’Hare, 2002). To summarize cogent points:
	1)Weather-related situation risk may escape perceptual or cognitive appreciation
	a) Perceptual:The physical situation of risk may literally not be perceived.
	b) Cognitive: It may be physically perceived but psychologically underestimated for some reason(s).
	i) The base rate of risk for that situation may be unknown.
	ii) Knowledge of weather-related flight rules may be inadequate.
	iii) The probability of disjunctive events may be underestimated (explained below).
	iv) The probability of conjunctive events may be overestimated (explained below).
	2)Weather risk may be appreciated—and knowledge of flight rules adequate—but cognitive or emotional factors may overrule apparent good judgment.
	a) A pilot may overestimate his or her piloting ability.
	b) Sunk-cost effect may promote flight continuance (explained below).
	c) Fractional anticipatory goal response may promote continuance (explained below).
	-

	d) A mental risk/benefit equation may be operating, in which case the estimated benefit of continuing into IMC may outweigh the estimated risk.
	i) Objective risk is the net probability of and severity of loss, given all parameters of the situation.
	ii) Perceived risk is one’s cognitive/affective estimate of objective risk.
	iii) Benefit may be positive reinforcement (R) or negative reinforcement (R)
	+
	-
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	To illustrate Point 1a, consider the difficulty of determining ground visibility during fog. In the absence of reference objects of known size, there are simply no reliable perceptual cues on which to base an accurate visibility estimate. Accurate risk assessment fails because of missing physical information. In some cases, the information may be there, but the cues may simply be missed due to lack of knowledge of what they are or inexperience at judging them. This kind of situation can often be handled wit
	To illustrate Point 1a, consider the difficulty of determining ground visibility during fog. In the absence of reference objects of known size, there are simply no reliable perceptual cues on which to base an accurate visibility estimate. Accurate risk assessment fails because of missing physical information. In some cases, the information may be there, but the cues may simply be missed due to lack of knowledge of what they are or inexperience at judging them. This kind of situation can often be handled wit
	-

	In Point 1bi, base rate means the statistical likelihood of some accident happening under given circumstances with an average individual (O’Hare, 1990). For instance, how many of us know the average odds of crashing, given some complicated flight situation? Often, the only information we have is very crude, such as “fatalities per million miles.” This tells us little about the average risk involved with any given kind of weather (Oppe, 1988). Because there are so many kinds of situations, it becomes nearly 
	-

	Point 1bii involves inadequate pilot knowledge of weather-related flight rules. Rules are the “yardstick” defined by knowledgeable authority, by which individuals can gauge the risk of their own behavior, even though they may never have experienced the catastrophes that motivated those rules in the first place. And, if we deeply consider the meaning of rules, we realize that good rules are actually statements embodying prior knowledge about accident base rates. If clear knowledge of those rules is missing, 
	Point 1biii refers to a highly common psychological bias. In disjunctive risk assessment, we have a bias to underestimate the global chance of something happening at least once when a chance process is repeated over and over (Kahneman & Tversky, 1982, p. 15). For instance, what is the actual chance of crashing at least once, if we fly six times, each time having a base rate of 1/30 for the crash risk? The answer is 1 – (29/30) = .184. Many people would estimate it as less probable than that, even when given
	-
	6
	-

	Point 1biv refers to a similar bias to overestimate the global chance of something happening all the time when a chance process is repeated over and over (Kahneman & Tversky, 1982, p. 15). For instance, what is the chance of always flying successfully, if we fly six times, each time having a 1/30 chance of crashing? Notice that this example is the logical complement to the previous one. The answer is (29/30) = .816. Many people would estimate it as more probable than that, indicating a bias toward optimism 
	6

	Point 2 has to do with risk that is appreciated but is mentally overridden or overruled for some reason. Shappell and Wiegmann (2003) estimated that GA fatal accidents are four times more likely to be the result of rule violations than are non-fatal accidents. Some of these violations are unconscious, due to the factors listed in Point 1. The rest are conscious. If one knows the yardstick but chooses to ignore it, then we are faced with a much different situation, one calling for a very different strategy t
	-
	-
	-

	One simple reason that people ignore rules may be 2a, often called confidence calibration. In other words, how well does one’s own confidence in oneself truly match what one is capable of doing? The plain fact is that most people put more faith in their own abilities and judgments than actual performance warrants (Baranski & Petrusic, 1994). Pilots are no exception (Wilson & Fallshore, 2001). Most people tend to idealize their own skill level, for one thing. For another, we often tend to think we can put fo
	Sunk-cost effect (Point 2b) is the degree of investment we have in some situation, literally what we have “sunk into it.” The importance of sunk cost has to do with prospect theory (Kahneman & Tversky, 1979). Prospect theory states that, everything else being equal, certainty carries more mental weight than uncertainty. For example, if one has ten hours invested in a flight, and encounters bad weather ten minutes from destination and decides to divert, the risk of crashing in that last ten minutes is uncert


	A simpler, older proposal, put forth by behavioral theory, is Point 2c, “fractional anticipatory goal response.” This is the behaviorist’s explanation for why a rat tends to run faster the nearer it approaches the goal. It is a stimulus-response principle thought to result from pre-goal cue stimuli associated by generalization with past goal rewards (Hull, 1932, 1934). Apparently there is no research relating VFR-into-IMC and fractional anticipatory goal response. This is probably due to the almost-total as
	A simpler, older proposal, put forth by behavioral theory, is Point 2c, “fractional anticipatory goal response.” This is the behaviorist’s explanation for why a rat tends to run faster the nearer it approaches the goal. It is a stimulus-response principle thought to result from pre-goal cue stimuli associated by generalization with past goal rewards (Hull, 1932, 1934). Apparently there is no research relating VFR-into-IMC and fractional anticipatory goal response. This is probably due to the almost-total as
	A simpler, older proposal, put forth by behavioral theory, is Point 2c, “fractional anticipatory goal response.” This is the behaviorist’s explanation for why a rat tends to run faster the nearer it approaches the goal. It is a stimulus-response principle thought to result from pre-goal cue stimuli associated by generalization with past goal rewards (Hull, 1932, 1934). Apparently there is no research relating VFR-into-IMC and fractional anticipatory goal response. This is probably due to the almost-total as
	-
	-

	Point 2d, the risk/benefit equation, is a plausible theory as well. The basic notion is that our brain, in combination with learning and emotions, instantiates some kind of “computational algorithm” that attempts to compute situational risk, then weighs that risk (or cost) and benefit, and finally stimulates us to make a choice between, say, behavior A or B:
	-

	If (benefit + noise) > (risk + noise) Then A
	benefit
	risk

	Else B
	“Benefit” here is an intangible mental construct based on tangible gain. Similarly, “risk” is an intangible mental construct based on tangible loss. More specifically, benefit and risk are based on the estimated success probabilities of a specific behavior or course of action. Both risk and benefit are person-specific and situation-specific. The two kinds of noise represent various sources of error, both about benefit and risk. 
	One explicit goal of pilot training is to correctly calibrate risk-taking behavior. This means to fly when we should fly and to not fly when we should not. It is not simply about avoiding all risk. After all, we could eliminate all accidents by eliminating all flight. But the practical goal of learning to be proactive about safety is rather to learn how to sense the cues to risk, along with rules teaching us how to compare our subjective sensations and estimations to some objective standard of risk. Finally
	-

	The current study concerns this problem of what motivates pilots to risk VFR-into-IMC flight. We chose to ignore the recuperative aspect of risk, focusing instead on how pilots do get into trouble in the first place. So far, this has usually been studied in situations where the pilot is airborne. Here, we examined a complementary situation where, given marginal weather right from the onset, we measured whether or not the pilot would take off.
	This paradigm not only looked at another aspect of the overall problem but also simplified the baseline motivational situation in three ways. First, it minimized perceptual miscalculation (Point 1a), since we actually gave the pilots a weather report containing more accurate current information than what they could derive through their own senses. Second, it minimized the issue of disjunctive and conjunctive events (Points 1biii, 1biv), since the experiment involved only one trial per subject. Third, it sim
	-

	METHOD
	Participants and Demographics
	Sixty GA pilots participated in this study (53 males and seven females, aged 18-69; median 23.5, mean 26.0, SD 8.4). All subjects were instructed that participation was voluntary, and each signed an informed consent form after a formal briefing of the study parameters. In addition, each subject completed a basic demographic questionnaire before the study began and a debriefing form when finished (see Appendix B). 
	Pilots had a median flight experience (GA plus commercial experience) of 2.3 years (mean 4.2, SD 7.5, range .25-48.25). Median flight hours (GA plus commercial) were 183.5 (mean 755, SD 2604, range 35-20000). Exactly one-half of the pilots were instrument-rated.
	-
	-

	Means and standard deviations (SD) were skewed by the presence of a relatively small number of older pilots with a great deal of experience (see Appendix C). Therefore, medians were sometimes the more informative estimates to consider in discussion and distribution-insensitive statistics the more appropriate to use during analysis. Appendix D details all variables examined. Additionally, a data-conditioning technique (winsorization) was applied to correct for outliers during the analysis. (Appendix E).
	-
	-



	Experimental Design, Independent and Dependent Variables
	Experimental Design, Independent and Dependent Variables
	Experimental Design, Independent and Dependent Variables
	The aim of this study was to examine some of the perceptual, cognitive, and affective processes used by GA pilots when deciding whether or not to take off into marginal weather. This necessitated finding correlates of takeoff behavior (predictors). This, in turn, required manipulation of conditions likely to induce takeoff.
	Therefore, three independent variables (IVs) were set up to assess how each (plus their interactions) would subsequently influence a single dependent variable (DV)—Takeoff Decision.
	These three independent variables were all factors external to the pilot, namely
	1)Three levels of marginal ground visibility
	a) 1 statute mile (sm)
	b) 3 sm
	c) 5 sm
	2.Two levels of marginal cloud ceiling
	a) 1000 ft
	b) 2000 ft
	3.A financial incentive for takeoff
	a) Straight salary ($17 per hour)
	b) Straight salary plus a $200 sliding-scale bonus (described below)
	Visibility and cloud ceiling are two familiar and important components of weather normally influencing pilot decision making. Financial incentive is a real-world commercial factor that, to our knowledge, has not been closely examined as a modulator of risk behavior in the GA setting. The goal here was to cover a wide enough range of weather conditions to have some in which almost no pilots would take off, and some in which practically all would. To that end, our selection of weather values was heavily influ
	-

	The financial variable was set to be appealing to our modal pilot. Demographics from past experiments showed that our usual subject’s age was circa twenties, with income modest, since a considerable number were students from local flight schools. Two levels of financial incentive were chosen. Low Financial Incentive consisted of a base salary of $17/hr for all 60 participants, whether they decided to take off or not, and was the only financial reward in that condition. In contrast, High Incentive pilots wer
	A potential confound arose, in the sense that the reinforcement value of money varies in relation to the participant’s need for it. Unfortunately, there was no good way to control for this ahead of time, other than by random assignment to groups. Trying to assign subjects to groups based on either real-time or post hoc sample-matching sometimes runs as much risk of introducing bias as it does of eliminating it, so we elected to assign group membership as a random function of whenever a given person happened
	Certain personality factors might predict takeoff into adverse weather. Specifically measured here were:
	•Prior aviation risk-taking behavior
	•Anxiety
	•Impulsivity
	•Risk orientation
	•Sensation-seeking
	because each has previously shown to bear some relation to risk-taking in other domains. Table 1 shows a brief list of the personality instruments administered, what they measured, and primary references to each in the open literature.
	One of the planned statistical methods (logistic regression) would allow treating the scores on each of these instruments as an IV (technically a “predictor” in this context, because the variable was not actually subject to experimental manipulation). The strength of the statistical relation between each pilot’s predictor scores and subsequent yes-or-no takeoff could then be measured and used to infer relations between decision making and the putative factors involved.
	-
	-

	Apparatus and Procedures
	All participants were given instructions to imagine themselves as pilots working for a private air cargo company currently contracted to transport a drill bit from Page Municipal, an uncontrolled airfield near Oklahoma City, OK, to an oilfield near Amarillo, TX. Because the field was uncontrolled, no weather condition pilots faced was a true technical violation of FAA rule or procedure. 
	-

	Pilots were instructed to consider themselves working on a per-hour basis with their base salary to be paid whether they chose to fly or not. The company itself was described as being in good financial shape, with corporate attitudes favoring the pilot as the ultimate tactical decision 
	-



	maker. Pilots were instructed that their flight would have to be made under VFR because the aircraft was not instrument-certified. They were strongly encouraged to treat their situation as close to reality as possible. They were also told that, no matter what their takeoff decision, their identities would be kept strictly in confidence.
	maker. Pilots were instructed that their flight would have to be made under VFR because the aircraft was not instrument-certified. They were strongly encouraged to treat their situation as close to reality as possible. They were also told that, no matter what their takeoff decision, their identities would be kept strictly in confidence.
	maker. Pilots were instructed that their flight would have to be made under VFR because the aircraft was not instrument-certified. They were strongly encouraged to treat their situation as close to reality as possible. They were also told that, no matter what their takeoff decision, their identities would be kept strictly in confidence.
	-

	Each pilot received a single trial containing one combination of Visibility x Ceiling x Incentive. The net result was a between-subjects, 3x2x2 design with 12 cells, each containing five pilots. Cells had either two or three VFR-rated pilots, with the remainder being instrument-rated.
	Each pilot received written instructions and an 8.5 x 11-in roadmap-style map showing major regional cities and roads, with the weather front overlaid. At the bottom of this map was a Meteorological Aerodrome Report (METAR)-style text weather report. Pilots also saw a visual simulation of the stated weather conditions shown from taxiway level using the high-fidelity Advanced General Aviation Research Simulator (AGARS) of the Civil Aerospace Medical Institute. The simulator was configured as a Piper Malibu, 
	-
	-

	Pilots were given as much time as they required to complete their flight planning before countdown was initiated on the financial incentive. This typically took 5-10 minutes. Once finished planning, they were asked to give their initial go/no-go decision. Pilots choosing to fly were then asked to take off in their assigned weather and fly for a period of time equivalent to their clearing the weather front (about 20 minutes). Those choosing to stay grounded were allowed to wait and see if the weather would c
	-

	The experiment was terminated either after two hours for pilots electing not to take off, or after 20 minutes of flying for those airborne. The assumption was made for high-incentive pilots that, if they resisted takeoff until the bonus went to zero at two hours, they would probably continue to resist indefinitely. Low-incentive pilots electing to remain on the ground were therefore cut off at 2 hours to equilibrate them with their high-incentive counterparts.
	-

	RESULTS
	The strategic aim of this study was to examine weather-related decision making. By exposing pilots to conditions of marginal visibility, we hoped to separate a large group of pilots into two groups—ones who would fly into bad weather versus ones who would not—and then study those two groups for critical differences. Those differences, both in personality factors and in reaction to specific environmental factors, might grant insight into the mind of the pilot.
	Two analytical techniques were used, chi-square and logistic regression. Given appropriate comparisons, both give similar results. Chi-square has the advantage in simplicity and universality of use. Logistic regression has the advantage of being able to interpret statistical interaction terms. However, extreme care has to be exercised because logistic regression is a complicated procedure with great room for error (Appendix F gives details).
	-

	Regression involves the search for predictors—measurable factors that predict some outcome of interest. Appendix D gives the complete list of predictors used in this study. The tactical aim of regression is to create and test models—purposeful simplifications of reality used on a higher level to infer causes of behavior.
	-

	To summarize how we judged a model’s performance or quality, our major numerical criteria for judging regression model quality were a) Wald p; b) predictivity; and c) Nagelkerke R. In logistic regression, model reliability is estimated with the Wald statistic. Wald p is analogous to regular p values in other statistics and estimates how likely we would be to get different results, were we to test a new group of pilots. Predictivity is expressed, first of all, by a raw percentage of cases successfully predic
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	Finally, we needed to assign a higher credibility to simple models—and ones based on theory—than just to models with high numbers for p, predictivity, and R. There are both logical and statistical reasons for doing 
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	this. We all know Occam’s Razor, the old adage that, all things being equal, the simplest explanation is usually the correct one. Highly complex theories often turn out to be wrong. This applies to regression in the sense that, given two models with equal p, predictivity, and R, the model based on sounder theory AND containing fewer predictors generally proves more stable on retest (Tabachnick & Fidell, 2000, ch. 12).
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	Analysis of the Full Data Set (N=60) 
	This experiment began with a total of 83 measurements on various environmental, motivational, and psychological aspects of both the situation and the pilots, some of which would reasonably be better than others at predicting takeoffs. Two of these predictors were independent variables involving the physical environment (Visibility, Ceiling) and a third was psychological/motivational (Financial Incentive). That left 80 descriptive variables, both demographic and from personality tests. Most involved numbers 
	-
	-
	-
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	Before speaking to specifics, four potential criticisms must be addressed, namely boredom, instrument rating, multicollinearity, and accidental group differences. First, during a two-hour experiment in which pilots had to essentially sit and do nothing while waiting for weather reports, we might expect boredom to interact silently and uncontrollably with the financial bonus to induce the high-incentive pilots to take off more quickly than the rest. However, boredom demonstrated no evidence of being a factor
	-

	A second concern could be the questionability of testing instrument-rated pilots in a situation demanding VFR flight. While the experimental groups were set up to distribute the two types as equally as possible among the various treatment conditions, the question could still be reasonably asked. If instrument rating were a contaminating factor, then we would expect the two groups to differ in takeoffs when sorted by rating. But no such effect was evident. Instrument-rated pilots had slightly fewer takeoffs,
	-
	-

	The third concern had to do with multicollinearity. Multicollinearity is basically about two or more predictors measuring the same experimental factor. This can artificially inflate a model’s performance (Tabachnick & Fidell, 2000). Given the large number of candidate predictors examined here, it made sense to look at their correlations, to ensure that they were not merely measuring the same factor more than once. Appendix G shows correlation matrices for the small number of significantly correlated predict
	-
	-
	-

	The fourth concern (accidental group differences) was certainly valid. Certainly, one cell in the analysis might end up with, say, a significantly higher mean number of flight hours than other cells. This might exert some unknown, unwanted effect on takeoffs. However, little could be done in a study of this type to avoid this problem because there were simply too many predictors being examined. Typically, with a small predictor set, one might counterbalance subjects on values for every predictor and every c
	-

	Descriptive Statistics—Demographics and Debrief Data. Table 2 summarizes the demographic data. As is evident from the medians in Table 2, most of these pilots were fairly new. Most were males (53/60), and recall that exactly half were selected to be instrument-rated.
	The primary statistical problem in the demographic data was the presence of outliers, a small number of extremely deviant scores (defined here as values greater than 3.0 SD above or below the mean). This was immediately evident from looking at the means and standard deviations. When the two are nearly equal, this implies logical absurdities such as the possibility of having negative flight hours. In reality, this was an artifact of outliers. Outliers are common in aviation studies, particularly in the demog
	-
	-



	normality (p) and kurtosis normality (p), far less than .001 in most cases, indicating severe non-normality of these particular distributions. 
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	Fortunately, there are well-accepted ways to deal with outliers. These data responded well to winsorization (Appendix E). Virtually all outliers were eliminated with only minimal change to the data’s ratio-scale structure.
	-

	Regression analysis can be problematic when a large number of predictors are examined. First, there has to be a limit to the number of predictors allowed in each model. Generally between 3-10 cases (here meaning pilots) are needed per model predictor (R. A. Foster, personal communication, Jan. 15, 2004). Second, the sheer number of candidate predictors present at the beginning of the analysis can be a problem (Foster & Stine, 1998). Finally, a number of widely different models may show roughly the same pred
	-
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	Rather than dwell on complex statistical issues at this time, we address them in a separate technical report entitled Pilot willingness to take off into marginal weather. Part II: Antecedent overfitting with forward stepwise logistic regression. For the purposes of this discussion, the reader can be assured that the results presented here (Part I) were coordinated with, and subjected to the rigorous scrutiny detailed in, the Part II report. We now turn to the analysis of the full data set.
	-

	Individual Predictors. In this analysis, each predictor was first run separately in a logistic regression model including a constant. This was done to get a feel for the performance of each predictor before doing more complex modeling. One reason for including the constant was pragmatic. SPSS tends to stall without it unless a model has at least one extremely strong predictor to start with. The other reason was theoretical. The constant-only model is basically a guess based on the after-the-fact success rat
	-

	Appendix H contains the complete results of single predictors for the full data set. At this point, it was unnecessary to test both conditions of binary categoricals because single-predictor analysis yields the same result no matter which contrast is tested. Summary results for our three primary IVs are listed in Table 3.
	-

	In this particular case, chi-square and logistic regression gave identical p values. These revealed that the effect of our three primary IVs was not remarkable across the full data set. Financial Incentive was the strongest, yet its nominal Wald p was only .07, R = 7%, and the Financial Incentive term only increased predictivity 3.4% (two cases) above performance yielded by the model’s constant alone. In other words, none of our three IVs, when examined by itself, performed much better than an educated gues
	-
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	Interactions. Interactions in regression reflect synergy between predictors. Logically, they ask “What factors working together multiplicatively affect takeoffs more than the same factors would if merely added together?” Table 4 lists the results for two- and three-way interactions between our IVs in the full data set.
	A significant interaction implies that the effect of one variable is different at different levels of the other variable(s). To better visualize this, Figure 2 shows the actual raw takeoff frequencies split by Financial Incentive. In the Low Incentive group, note the cell at 5 miles visibility and 2000-ft ceiling. This has four takeoffs. This illustrates how interactions work. It as if Visibility and Ceiling team up to produce an outsized effect at that particular combination.
	-

	At the level of main effects, trends emerged here as expected. Fewer pilots generally elected to take off as visibility, ceiling, and financial incentive decreased. However, as Figure 2 shows, inter-cell variability kept these trends from being statistically significant—particularly the presence of four pilots flying at the very worst conditions of visibility and ceiling.
	-
	-

	One thing especially interesting about these interactions was the notion that Visibility x Ceiling very probably constituted a cognitive “chunk.” In other words, it was logical that many pilots cognitively considered both factors simultaneously and synergistically, suggesting that “the whole was greater than the sum of the parts.” This probably denoted a key underlying mental representation driving some of these statistical interactions. Inside the minds of pilots, “weather” was probably not just visibility
	-
	-

	As for the personality variables, examining all possible interactions between all predictors would have been tedious and unwise, inflating the Type I error rate ever higher. There were 83(83-1)/2 = 3403 possible two-way interactions alone. Clearly, it made good theoretical sense to limit examination mostly to interactions involving the IVs. So, operating on the assumption that “Weather” ≅ Visibility x Ceiling, we therefore inspected weather-by-everything-else, plus financial incentive-by-everything-else. 
	-
	-



	This turned out to be surprisingly uninformative. Thirty-one models of the type Vis x Ceil x Predictor Y and Financial Incentive x Predictor Y had nominal significances of < p = .10 (uncorrected). This implied four things. First, there were obviously a large number of models, roughly equal in reliability. Second, after correcting merely for multiple comparisons, none of these would be traditionally significant. Third, most of the predictivity was coming from the IVs themselves (“Weather” and Financial Incen
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	Preliminary Conclusions for Full Data Set. So what did these full-set models mean? In all candor, we must not place too much stock in them. While predictivities in the 80% range might seem impressive, less than half the outcome variance was explained. We have to keep in mind that the model constant alone is always capable of predicting at better than a chance (50%) level. Nor was correction made for the number of models tested (which would have pulled significance levels down even further). Finally, there w
	On the surface, the results looked confusing. There were many models, often with similar performance. But, in truth, it was not hard to understand the big picture: a) There were undoubtedly predictor effects going on, but they were multiple effects, pulling in different directions; b) Pilots have multiple, simultaneous motivations, and the effects of environment are filtered through each pilot’s unique, multi-dimensional personality; c) So the net effect on behavior is complex. Not altogether unpredictable—
	-
	-

	Another way of saying this is that pilots were apparently not just being swayed by the independent variables. They were interpreting the visibility, ceiling, and financial incentive in various combinations through the medium of their own individual personalities, which were highly variable and themselves comprised of interrelated components, some of which acted synergistically.
	-
	-

	Another high-level realization was that the more reliable model predictors could be usefully categorized into either “go” or “no-go” factors. The beta (β) term in the SPSS regression output expresses the direction of influence for its associated factor. A β >0 means that pilots with higher scores on that factor are more likely to take off. That is a go factor. Conversely, β < 0 denotes a no-go factor. For no-goes, the higher the predictor score, the less likely is takeoff. 
	-
	-

	This underscores a lesson regarding the modeling process itself. As our experience with modeling became deeper, it became clear that stronger models typically had at least one go predictor and at least one no-go predictor. Part of this pairing effect may just be an artifact of how the logistic prediction equation is used (Appendix F, Equation 1). Optimal modeling may mathematically require either a mix of go and no-go predictors, or else a constant that can serve as either positive or negative. This makes s
	-

	But, mathematics aside, what could also be happening here is that people actually may be motivated by two fundamentally different cognitive processes. There could be a positive go-factor process assessing and weighing what is good about a situation versus a negative no-go process assessing and weighing what is bad about the exact same situation. This certainly makes intuitive sense and may be one operating principle underlying these results. At this point, it would be premature to argue the precise nature o
	-

	To summarize, without a clearly front-running model for the full data set, it ultimately seemed reasonable to break the data into Low Incentive versus High Incentive groups, and conduct separate analyses. That would control for the effect of the most reliable single IV of Financial Incentive, and it would allow the Low group to serve as the control and the logical contrast for the High group.
	Analysis of the Low Financial Incentive Group Only
	Simple Models With a Constant. Following the same basic process used for the full data set, the Low Incentive data were separately winsorized, rather than merely breaking the winsorized full set in two. This separate winsorization moderated outliers, while ensuring that data were treated as if they had been from a separate experiment.
	-

	Appendix I shows the full single-predictor-plus-constant analysis for this group. Visibility was the only single predictor to even approach traditional, uncorrected significance (Wald p = .064, R =.177, predictivity boost over the constant-alone model [76.7 – 70] = 6.7% = 2 extra cases). 
	2

	One of the major problems confronting this analysis was precisely the high base rate of pilots refusing to take off (70%). And, while this did say quite a bit all by itself, it also guaranteed that any model with a constant 


	could always be at least 70% correct simply by “guessing” non-takeoff. This left all other model predictors to fight over the remaining variance, almost guaranteeing modest performance no matter how clever the model. It also suggested looking at models without a constant, even if they might be harder to bootstrap.
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	-

	Two Outliers Are Dropped. Close examination of the pilot debrief data ultimately suggested re-running the analysis minus two outliers—two pilots who chose to take off into the absolute worst weather for no apparent reason. Statistical analysis of the two’s demographic and personality data at first failed to show any measurable significant differences from the rest of the pilots on any predictor. On the surface, their personalities and motivations seemed normal, yet their takeoff behavior seemed a mystery. F
	-
	-

	Pilot 1 (age 29)
	1.Zero latency (i.e., impulsive takeoff).
	2.Had never had a traumatic weather experience before.
	3.Had never flown a Piper Malibu before and was anxious to try out the simulator.
	4.Said “I would never try that again.”
	5.On retest a month later with the same scenario, he stayed on the ground.
	Pilot 2 (age 22)
	1.59 minutes latency (very hesitant).
	2.Had never had a traumatic weather experience before.
	-

	3.Had flown a similar situation in real life.
	4.Went aloft to scout the situation. Found I-40 (highway leading straight to destination)
	-

	5.Next said he was afraid to turn around or divert, for fear of losing sight of I-40.
	6.Said “I probably wouldn’t do it again.”
	7.On retest, he also stayed on the ground.
	This turned out to be a classic case where quantitative data failed to uncover the root causes of behavior, but the qualitative story was crystal clear. Pilot 1 made an impulsive takeoff decision, based on his lack of any prior truly bad experience with weather, coupled with a youthful desire to fly a million-dollar simulator in which he knew he could not really get hurt. Pilot 2 took a far more conservative tack but, ironically, one leading to the same takeoff decision. He was quite hesitant, taking nearly
	-

	The question at hand here was whether or not dropping these two pilots from the analysis would be justified. We felt it was. First, this was an exploratory study, so extensive reporting of results was critical. Low Type I error always comes at the expense of inflated Type II error. So, completely rigid standards of reporting would mean failing to report potentially valuable preliminary analytical information useful to others in the field. Second, we had at least anecdotal information supporting the idea tha
	-
	-
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	This was priceless empirical evidence: Inexperience enables foolish behavior. Inexperienced pilots lack key mental constructs, namely how difficult it is to fly through certain kinds of weather. This is a root problem. Moreover, this root problem is correctable. It can be fixed with a very small amount of simulated weather experience. Our two errant young pilots aptly demonstrated that experience can change behavior, since this experiment, itself, was precisely a small amount of simulated weather experience
	3

	With two outliers excluded from the analysis, the Low Incentive data now told a stronger, richer, more compelling story. Forward stepwise regression (LR method) was now able to produce 3-4-factor models with predictivity as high as 92.9%, and R as high as .921. In perfect honesty, arcane-but-valid statistical considerations did suggest that many of these models may have been artifacts of the regression procedure. So in the end, rather than defending stellar-but-suspect models, it made more sense to retreat 
	-
	-
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	This implied compactly that “Weather”—when defined as Visibility x Ceiling—was a reasonable predictor of takeoff in the Low Financial Incentive group. The constant term embodied an overall group tendency to regard all the weather conditions as bad, while the VxC interaction 
	-



	term represented a kind of finer-grained distinction being made between the six conditions of visibility and ceiling themselves after the average effect of weather had been accounted for. 
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	term represented a kind of finer-grained distinction being made between the six conditions of visibility and ceiling themselves after the average effect of weather had been accounted for. 
	To be circumspect, modelwise predictivity (85.7%) was only 10.7% higher than the constant-only baseline (75%). It was also true that we did not correct for experimentwise error. But keep in mind here that the constant, itself, undeniably reflected an extremely powerful weather effect here. The easiest way to understand this is to realize that virtually all pilots would have taken off in perfect weather. As it was, 21 of 28 stayed on the ground. The odds against that happening by chance were extremely remote
	-
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	This model was simple and made a great deal of sense. It contained one factor essentially saying “None of this weather looked good” plus a second factor saying “We can represent levels of ‘weather acceptability’ by multiplying visibility times ceiling.” Together, both factors accounted for about half the explainable variance in takeoffs. The rest could be attributed to individual differences, that is, individual pilot logic reasoning and affective states.
	In short, pilots appeared to have many, varied, and individual motives for their risk behavior here. They did show some commonalities. No pilot thought any of this was good weather. But they also displayed considerable individual reaction to specific weather combinations. There is no such thing as the “average” pilot when it comes to weather.
	Analysis of the High Financial Incentive Group Only
	Simple Models With a Constant. Like the Low Financial Incentive group, the High Incentive data were separately winsorized, rather than merely breaking the winsorized full set in two.
	Appendix J shows all single-IV models (+ constant). To summarize, very little stood out.
	Testing the  Model on the High Incentive Data. Given the good performance of the VxC+constant Low Incentive model, it made sense to try this on the High Incentive (n=30) data as well. Table 6 summarizes the result.
	VxC+Constant

	Note that 53.3% of pilots did take off (versus 30% in the Low Incentive group). The non-significant VxC interaction here implies that the High Incentive group failed to show the same degree of fine-grained weather discrimination as the Low Incentive group (explained below).
	This model did show evidence of an overall gross-weather effect, because the constant alone could predict a base rate 53.3% of takeoffs. Since we can assume that nearly all pilots would take off in perfect weather, something had to explain all those non-flying pilots, and nothing was plausible other than weather. As before, the base rate represented an overall group tendency to regard all the weather conditions as bad. 
	6

	A second, more startling observation was the complete and utter lack of VxC interaction in the high-incentive group (p=.396). This term represented how the individual pilot judged the specific weather in a given cell—fine-grained weather discrimination, in a manner of speaking.
	-
	-

	Given our assumption of weather discrimination being the VxC “cognitive chunk,” it was logical to ask if some kind of fine-discrimination effect might have been hidden elsewhere, for example inside a VxCxPredictor Y interaction. Appendix K shows this was not supported. Only three of 86 interaction contrasts fell below the uncorrected α = .06 level (this was even fewer than expected by pure chance).
	-
	-

	This was extremely meaningful and important information. Whereas specific weather conditions probably did influence groupwise takeoffs under low financial motivation, once a financial bonus entered the picture, the same differences in weather ceased to matter. This point cannot be stressed too much. As soon as money entered the picture, the focus of pilot rationality shifted away from attention to weather details and toward something else. And the most logical candidate from the pilot point of view, of cour
	-
	-

	Detailed Analysis. It is one thing to make this assumption, though, and quite another to support it against all challenges. For one thing, groups are made up of individuals. What constitutes a groupwise effect may not equally apply to all individuals within that group. We knew we had at least some pilots for whom the $200 bonus was financially irrelevant. In fact, one was recently retired from commercial service at a final salary of $250,000/yr. He came right out and told us the bonus was irrelevant. So did
	-
	-

	With that in mind, the High Financial Incentive data were sorted into a 2x2 matrix (Table 7). There had been one predictor, buck_mot, which was a very straightforward debrief question: “If you were in the ‘high-incentive’ condition, did this affect your willingness to take off?” (yes/no).
	-
	-
	7

	A “Yes” answer would supposedly indicate a bonus-susceptible pilot, with “No” indicating a bonus-immune pilot. These answers could then be compared with actual yes/no takeoff behavior.


	Bonus-susceptible pilots should have been more likely to take off than bonus-immune pilots. Table 7 shows that a trend did emerge as predicted (chi square = .062, uncorrected). This was also supported by logistic regression (Appendix J, buck_mot Wald p=.071). Those not strongly desiring the bonus tended to stay on the ground (“actual frequency” column, gray cell, n=7). Those desiring the bonus tended to take off (n=12).
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	-
	-

	This was encouraging, but an alternate hypothesis could have explained the results. Could the average weather just have been different in the four cells? After all, pilots had not been assigned to any particular weather conditions by buck_mot. So, for instance, perhaps the bonus-susceptible pilots had merely had better-than-average weather, and maybe their stated financial desire had had nothing to do with their higher takeoff rate.
	To investigate this, we created an “average weather” score for each cell by multiplying Visibility x Ceiling for each pilot, summing values cell-wise, and dividing by the cell n (Table 7). By this method, larger numbers represented better average cell-wise weather. The overall average was 4476.
	8

	The result was complex, but not impossible to interpret. First, bonus-susceptible pilots (buck_mot=“Y”) had (by pure chance) worse-than-average weather (2333 and 4333). Yet they still took off at a higher rate than bonus-immune pilots (12/18 takeoffs vs. 3/10 non-takeoffs, or 67% vs. 30%). So we could rule out the idea that the bonus-susceptible pilots had merely had better-than-average weather, because they did not. 
	-
	-

	Second, Appendix K shows a split-significance interaction. The VxCx buck_mot interaction was nearly significant for the “N” group (.052, uncorrected, meaning that pilots who answered “No” to buck_mot were coded as “0” in the logistic regression equation, so the analysis was focusing on the “Yes” group). Given the yes-group β of .450, this implied that the better the weather, the more bonus-susceptibles tended to take off. It was as if their internal “threshold of acceptability” for weather had been lowered 
	-
	-

	Moreover (although we did not specifically test it), we could speculate that the degree of susceptibility would be a function of how much money was involved. Logically, more pilots should take off for $1,000,000 than for the $200 offered here. But the “infection threshold” is probably less important than the higher-level principle that money influences people to take risks they normally would not take. From a theoretical viewpoint we could say money is a go factor that skews the cost-benefit equation.
	-

	Buck_mot seemed to measure the net effect of that equation—that is, the perceived benefit minus the perceived cost. Further evidence of the potential of buck_mot can be found in Appendix L. A total of 29 of 172 (17%) p<.05 (uncorrected) 3-way predictor interactions involved buck_mot. This was a greater proportion of low p values than found in any other 3-way predictor combination tested.
	-

	Case Study of Two High Incentive Outliers. Like the Low Financial Incentive group, the High Incentive group also had two outlier pilots who took off in the very worst weather condition (1 mile/1000 ft). In the Low group, elimination of those outliers cleared up the analysis greatly. Was a similar approach appropriate for the High group? 
	It appeared that the data did not support that approach, mainly because of the debrief information. The first High Incentive pilot told us he had taken off because he a) had flown a similar situation before, b) knew he could not get injured in the simulator, c) was an instructor with 2500 flight hours experience, and, d) said the bonus was very significant to him (5 on a scale of 5). The second pilot said that he a) also had flown a similar situation before, b) also knew he could not get injured in the simu
	In other words, like the two Low Incentive pilots, neither of these High Incentive pilots seemed particularly intimidated by the simulator. But, unlike the Low Incentive pilots, these two knew precisely what they were getting into because they had done it before in real life. Both flew calmly and methodically, executing the flight without incident. And both told us they would repeat their decision, given the opportunity. Their systematic approach was quite unlike the first Low Incentive pilot who took off o
	-

	Summary of Results for the High Financial Incentive Group. In summary, we concluded that both weather and money had some role in predicting takeoff in the High Financial Incentive group. However, there was more to it than met the eye. Money probably changed the effect of weather most for the sub-group of individuals who wanted it most. In the absence of the takeoff bonus, most pilots seemed to judge weather rather loosely, as “acceptable” or “unacceptable.” In the presence of the bonus, things got more comp


	first, to have a lowered overall threshold for what they considered “acceptable.” Second, they also seemed far more likely to take off when given better combinations of visibility and ceiling—as if they became more sensitive to the VxC interaction.
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	In short, pilots could be sorted into two groups according to stated financial motivation—bonus-susceptible versus bonus-immune. Bonus-immune pilots seemed more sensitive to weather, since only 30% took off, whereas 67% of susceptible pilots took off. Money is apparently capable of shifting the “acceptable weather threshold” for a substantial number of pilots (but not all pilots).
	-
	-

	However, not all High Incentive pilots behaved predictably, merely according to money. Nine of 28 (32%) made decisions opposite to their stated financial motive. Obviously, they had other, varied motivations beyond just weather or money. Finally, we can assume that some of the six bonus-susceptible non-takeoffs might have taken off, had they not serendipitously received worse-than-average weather. This would have further increased the predictive value of stated financial motivation.
	-

	Is the Simulator a Valid Environment to Test Financial Motivation? 
	-

	An important issue to explore here concerned a criticism some make of in simulo risk studies, namely why  take a chance if the payoff is big enough and the risk of dying in the simulator is zero? This concern has to be addressed, since it implies that simulator studies may not be valid under certain conditions.
	-
	not

	Two debrief questions were asked to try to quantify this issue. An affective predictor crashsig was derived from the question “If you were to crash in the simulator, how embarrassed would you be?” This was rated ordinally (rank-ordered) on a scale of 1 (“not at all”) to 5 (“extremely embarrassed”). Similarly, a cognitive predictor simmot was derived from the question “Did the fact that this was a simulation (and not reality) affect your willingness to take off?” This was scaled ordinally as “decreased willi
	-
	9
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	Neither item was reliable at predicting takeoff (crashsig Wald p = .135, lowest simmot p = .260 by Deviation method). Nor was the interaction of these two significant (p = .199). This was as we would prefer. However, integrity demands claiming only modest support for simulation validity. First, we knew we had at least two individuals who did not take the risk terribly seriously because they openly admitted it (see above, High Incentive condition). Second, self-reports may or may not be trustworthy. There co
	-
	-
	-

	In the end, perhaps the sensible thing to conclude is, once again, that “The action is in the interaction.” Simulator realism probably interacts with other individual personality factors as well as external environmental factors to influence the decision of some pilots more than others. In the final analysis, it is noise—an uncontrolled source of variance. We can probably only hope to control it by random assignment of participants to groups and conditions because no modern Institutional Review Board is lik
	-
	-

	DISCUSSION
	This was an extremely difficult analysis, for three main reasons. First, there were no easily identifiable effects for the independent variables (Visibility, Cloud Ceiling, Financial Incentive), or for the rest of the takeoff predictors examined one at a time. Whatever was influencing takeoff was far more subtle and hidden.
	-

	There was certainly one enormous statistical effect for “weather” as a whole. Over half the pilots chose to stay grounded, whereas close to 100% would have normally taken off in perfect weather. The trouble came in trying to determine what “weather” meant in the minds of the pilots, given that it did not seem to mean visibility by itself or ceiling by itself. The main logical alternative left was that visibility and ceiling were somehow interacting, and that takeoff behavior was possibly also being influenc
	After exhaustive search, there proved to be dozens of roughly equally well-performing multi-factor models. These had marginal significance, indicating that multiple factors were exerting a concerted effect, often in the form 


	of interactions. Plainly stated, pilots do not normally make important decisions based on a single factor alone. They consider multiple factors simultaneously. Moreover, different pilots are motivated by different combinations of internal and external circumstances. This is not a simple conclusion, but it is logical and defensible.
	of interactions. Plainly stated, pilots do not normally make important decisions based on a single factor alone. They consider multiple factors simultaneously. Moreover, different pilots are motivated by different combinations of internal and external circumstances. This is not a simple conclusion, but it is logical and defensible.
	of interactions. Plainly stated, pilots do not normally make important decisions based on a single factor alone. They consider multiple factors simultaneously. Moreover, different pilots are motivated by different combinations of internal and external circumstances. This is not a simple conclusion, but it is logical and defensible.
	The second main difficulty with this analysis was the side effect of looking at so many different models. This greatly increased the probability of Type I error (the chance of appearing to have an effect when none is truly present in the population at large). On the one hand, in such a preliminary study we wanted to explore a large number of candidate predictors to look for effective ones. On the other hand, had we used anything as statistically rigorous as a Bonferroni-type correction, there would be no re
	10

	The third reason this analysis was difficult concerned the nature of causation itself. The exegesis of these data has to be both quantitative and qualitative. Neither way of looking at it is complete all by itself. Just looking at numbers often fails to uncover a pilot’s full motivations. Sometimes the simplest, most reliable thing to do is to just come out and ask them why they did what they did. And yet, we certainly respect the standard arguments against qualitative data, namely that each person’s story 
	-

	High-Level Conclusions
	“Go Factors” and “No-Go Factors” Modulate Risk Behavior. Go factors can be defined as ones that increase the chance of a pilot’s proceeding with some risk-laden course of action. No-go factors are then factors that decrease the likelihood of taking that risk. Go/no-go factors can be external to the pilot (e.g., cloud ceiling) or internal (e.g., anxiety). We can hypothesize that each pilot has a unique go/no-go “cognitive/affective equation” whose outcome we can model, based on some weighted, summed combinat
	In fact, this was just the assumption underlying our logistic regression analysis. In each model, β terms defined go factors when β > 0, and no-go factors when β < 0. Predictivity and R were taken as indicators of a factor’s relative strength, and Wald p indicated reliability, the likelihood that our results were due to chance. As it turned out, estimation of reliability was more complicated than indicated by the SPSS output. But that did not change the basic, high-level conclusion that go factors and no-go
	2

	Individual Demographic and Personality Factors Were Not Good Predictors of Weather-Related Risk Taking. Demographic factors such as pilot age and flight hours did not produce reliable, highly predictive risk models all by themselves here. The exception was models with interaction terms (discussed below). The same was true of such personality factors as sensation seeking, aggression, venturesomeness, and anxiety. Essentially, this said that no one factor or group of individual factors belonging to pilots the
	-

	Pilots Probably Look at Groups of External Weather Factors as “Cognitive Chunks.” What did produce a large number and variety of interesting models was statistical interactions. Scores of models contained interactions demonstrating marginal reliability. Some of these were undoubtedly artifacts because false-positive results do occur whenever many, many models are tested. However, the large number of “almost significant” models found makes it unlikely that all were meaningless.
	-
	-

	Statistical interactions imply cognitive/affective factor-grouping (chunking) because an interaction essentially means that the whole has more effect than just the sum of its parts. For example, the Ground Visibility x Cloud Ceiling interaction found in the Low Financial Incentive group implied that the statistical effect of V*C > V+C.
	11

	What this means in terms of how pilots think is that multiple weak factors, taken together, can sway a pilot’s decision. It depends on the factors involved and the relations between those factors. 
	-

	Pilots Have Varied, Complex Motivations for Takeoff Into Marginal Weather. The lack of one single, simple, definitive model said there was no “average pilot” here. Each pilot was unique. Each pilot filtered the external IVs (Visibility, Ceiling, Financial Incentive) through his or her unique personality and experience. And—because so many personality and situational dimensions have demonstrated influence on risk taking in other venues—determining exactly which factor combinations resulted in risky weather b
	-
	-
	-



	Specific Lower-Level Conclusions
	Specific Lower-Level Conclusions
	Specific Lower-Level Conclusions
	With caveats fully in mind, the “best” quantitative models are summarized below (Table 8). These represent a reasoned balance between numerical performance, theory, and logic. 
	-

	However, to be perfectly clear, of these three, only the Low Incentive model approaches traditional reliability due to the large number of models tested. Refer to the Part II report for details. All full-set models had to be heavily discounted. First, the predictivity and R were roughly equal to what we could expect by chance from random number simulations (conducted in Part II). Second, those particular models were less theory-based and more just the output of stepwise regression. Stepwise regression produ
	2

	So, if the Full Set models said anything at all, they supported the assertions stated previously. Specifically, a lot was going on inside the heads of our pilots.
	Sorting the data by financial incentive had a very beneficial effect on the analysis. In the Low Incentive group, differences in weather did seem to affect takeoff behavior. At least some pilots seemed to mentally operationalize “weather” as a synergistic interaction of variables (Visibility x Ceiling) whose net effect was greater than just the sum of parts. It is reasonable to extend this conclusion to include other factors as well (although specifically naming those other factors and their interactions wo
	-
	12
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	Turning to the High Incentive group, we did not see many simple, straightforward effects. Money apparently did change some cognitive/affective processes, but it was not clear which were affected. Weather still mattered, but the effect was weaker than in the Low Incentive group. Moreover, as a group, pilots made very little distinction between the various weather conditions themselves. The best regression models involved the financial incentive. This probably meant that financial incentive interfered with th
	-

	Whatever the cause, according to their self-report, 25% of the pilots appeared to be immune to the financial bonus. Others appeared quite susceptible (43%). The rest were unpredictable, at least their stated financial motives did not match their final behavior. However, keep in mind that the relative proportions were specific to this group, and would not generalize to all pilots under all circumstances. What might generalize is the rough principle of risk susceptibility. But even that should be approached w
	-
	13
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	RECOMMENDATIONS
	Immediate Conclusions
	We agree with Oppe (1988) and others that risk tolerance depends on situation specifics and a large number of factors. Theoretically, these results supported the idea that most pilots were aware of some degree of weather risk, but some overrode that assessment because of one or more other factors, for example, money.
	-

	Weather risk-susceptible pilots consisted of two groups, a) the small group who were not aware of the risk in the first place and, b) the small group who chose to fly but may have lacked the skill to do so flawlessly under every circumstance.
	The first group would be fairly easy to amend. A small amount of PC-based weather training could be very helpful in dealing with pilots who have never flown in various types of bad weather. Such training would be relatively inexpensive in time and money, and could directly translate into lives saved. 
	The second group presents a somewhat greater problem, mainly having to do with identification of individuals at risk for having too much self-confidence, given the skill they possess. We obviously do not have to be concerned with highly skilled pilots whose abilities always exceed the risks they take. The ones we worry about are those who have more confidence than actual skill. Yet overconfidence is plainly hard to measure, at least on paper. Pilots tend to be highly confident people to start with. So how c
	-
	-
	-



	others respond based on natural behavioral instincts. Finally, what we really wish we could measure is not risk taking per se, but inappropriate risk taking. So how do you penetrate the fiber of individuals to know exactly what their real skill level is? And, if that were possible, the number of pilots taking inappropriate risks is going to be small, so how can that be pulled out of a large pool of otherwise normal research participants? This a signal-to-noise ratio problem.
	others respond based on natural behavioral instincts. Finally, what we really wish we could measure is not risk taking per se, but inappropriate risk taking. So how do you penetrate the fiber of individuals to know exactly what their real skill level is? And, if that were possible, the number of pilots taking inappropriate risks is going to be small, so how can that be pulled out of a large pool of otherwise normal research participants? This a signal-to-noise ratio problem.
	others respond based on natural behavioral instincts. Finally, what we really wish we could measure is not risk taking per se, but inappropriate risk taking. So how do you penetrate the fiber of individuals to know exactly what their real skill level is? And, if that were possible, the number of pilots taking inappropriate risks is going to be small, so how can that be pulled out of a large pool of otherwise normal research participants? This a signal-to-noise ratio problem.
	These are problems that need to be addressed. The optimistic viewpoint is that we do learn valuable, practical things from this kind of research. For instance, we now can guess that inexpensive, garden-variety PCs must soon play a pivotal role in pilot training because they can safely deliver certain critical kinds of flight experience for a relatively small investment in time and money. This suggests development of a personal computer-based program that can be used in conjunction with inexpensive home flig
	-
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	Future Research Directions
	We are still mainly at the factor-identification stage. We need to keep developing this comprehensive list of factors shown to influence inappropriate weather-related risk taking. As this study shows, this list of factors needs to include the possibility that some factors can synergistically interact with others to produce an effect greater than each would have separately. To restate the mantra, “The action is in the interaction.”
	-

	Our next weather-risk study will focus on the role of financial incentive, since that showed the greatest reliability of the three individual IVs tested in this study. We hope to settle the reliability issue by a relatively quick look at just that one predictor. Beyond that, we intend to explore the role of social factors (e.g. peer pressure) since this is also a plausible study area, well researched in other fields, but far less so in aviation.
	-

	One of the major obstacles to developing a Critical Factors List is statistical reliability. Given what we now know from this study about weak, multi-factor, interactional pilot mental processes, this means we could be wrong about the influence of some of our predictor factors. The best way around this reliability problem is to have other researchers repeat certain studies. Replication enhances reliability because, if two different studies are merely 90% sure of a given result, together, the results are 100
	-
	-
	-
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	ENDNOTES
	 R is receipt of some reward. R is avoidance of some punishment.
	1
	+

	 We will use the abbreviation “uncorrected” to stand for “uncorrected for experiment-wise Type I error.”
	2

	 Some critics would argue it unfair to draw such a strong conclusion based on anecdotal evidence taken from only two subjects. The logical response to that criticism is: a) Exploratory studies ought to make suggestions; b) Anecdotal evidence is usually more dependable when it comes from a relatively controlled experimental setting such as this.
	3

	 Once again, refer to the Part II study for details.
	4

	 Assuming a highly conservative base rate of 26/28 takeoffs for perfect weather, the estimated chance of getting the real takeoffs actually observed would be p=1184040*.07*.93 by expansion of the binomial—about 4 in 10 billion billion.
	5
	21
	7

	 Expected p=145422675*.07*.93≅ 3*10 or about 3 in a billion.
	6
	14
	16 
	-9

	 Two pilots failed to answer the buck_mot question on their debrief sheet, making n=28 for that analysis.
	7

	 This was exactly the same way logistic regression operationalized interactions, by multiplying the two scores together.
	8
	-

	 Logistic regression is appropriate for ordinal data as well as ratio-scale or categorical data.
	9

	 To (over)simplify, Bonferroni correction basically involves dividing each α significance criterion value by the number of comparisons made (Keppel, 1982). The more stringent the α, the lower that p and Χ values have to be to achieve “significance.” Given too many models, α can become so stringent that literally nothing is “significant.”
	10
	2

	 Technically, the statistical effect of βV*C > that of βV + βC, but that does not change the basic argument.
	11
	1
	2
	3

	 It needs to be said that an “average” weather effect (the base rate, modelable with a constant) would also emerge as an artifact from logistic regression if all pilots discriminated solely on the basis of a VxC process alone. However, to be conservative, we say “some pilots” and not “all pilots” mentally operationalize weather as an interaction.
	12

	 Risk is known to be domain-specific (Weber, Blais, & Betz, 2002). That is, a pilot who takes risks playing poker may be highly conservative in the air (or vice versa). This makes it virtually impossible to globally diagnose a “risk-taking personality.” Aviation risk-taking is a separate problem and has to be assessed separately.
	13
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	FIGURES
	FIGURES

	Relative fatality rates0.000.010.020.030.040.050.060.070.08199019911992199319941995199619971998YearFatalities per million passenger milesGeneral aviationCommercial aviationAutomotiveFigure 1. Fatality rates per million passenger-miles for U.S. gen-eral aviation, domestic commercial aviation, and automotive transport, sample years 1990-98.  
	Figure
	Figure 2. Summary of raw data–the number of pilots choosing to take off, given that cell’s triple combination of ground visibility, cloud ceiling, and financial incentive. Each of the 12 cells contained five pilots.
	Figure 2. Summary of raw data–the number of pilots choosing to take off, given that cell’s triple combination of ground visibility, cloud ceiling, and financial incentive. Each of the 12 cells contained five pilots.


	2
	2
	2
	2


	7Table 7. Frequency counts for High Financial Incentive pilots, grouped into 4 cells by Takeoffversus individual pilots• self-stated personal financial motivation (buck_mot).Actual frequencyŁ2 expected freqave. weatherbuck_motbuck_motbuck_motTakeoffNYNYNYN76134.68.41355712333Y312155.49.61556674333101828101828averageŁŁ0.0624476
	8Table 8. Best models for full-set, Low, and High Financial Incentive sub-groups. •Best• is defined by a combination of high reliability, predictivity, and R2, in combination with support from logic and theory.Data setBest model foundWald pPredictivityR2NagelCommentsFull setVisibility x Ceiling x MPQ Aggression.001-.003Two models, depending onN=60Actual instr. time (90 d) x $ Incentive.046-.07275-80%whether the referent wasAnxiety Sensitivity Index.001.527-.488"instrument-rated" or "non-Hazardous Events Ind
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	APPENDIX A
	APPENDIX A
	Method of Calculation for Rate of Weather Involvement in GA Fatalities
	In the Introduction of this report, we stated “Data derived by us from National Transportation Safety Board statistics (1995-1997) support this assertion, showing IMC implicated in approximately 32% of GA fatalities.” Here is how we calculated that figure:
	We started with data from the National Transportation Safety Board (NTSB) Annual review of aircraft accident data, U.S. general aviation, calendar years 1995-97 (the latest available year was, indeed, 1997). The figure of 90% GA accidents occurring in VMC was taken from the text, which claimed “More than 90 percent of accidents occur in visual meteorological conditions” (emphasis ours, NTSB, 1997, p. 2 used to illustrate). So we assumed that 90% was an estimate, but a conservative one. We then followed thes
	• The reports state that 90% of GA accidents occur in VMC (visual meteorological conditions).
	• Therefore, by deduction, (100-90) = 10% must occur in IMC (instrument meteorological conditions).
	• The reports state that 68, 63, and 69% of IMC accidents during their respective years involved fatalities (average = 66.7%), as opposed to 16, 15, and 16% of VMC accidents, respectively (average = 15.7%).
	• If 10% of accidents involve IMC, and 66.7% of these are fatal, then (10% * 66.7%) = 6.7% of overall accidents therefore involve IMC PLUS fatalities
	-

	• If 90% of accidents involve VMC, and 15.7% of these are fatal, then (90% * 15.7%) = 14.1% of overall accidents therefore involve VMC PLUS fatalities.
	• Therefore, ((6.7 / (6.7+14.1)) = 32%) is the ratio of (fatal accidents involving IMC / total fatal accidents), meaning that IMC is implicated in approximately 32% of GA fatalities.

	Year% GA acci-% in% of IMC acci-% of VMCdents in VMCIMCdents fatalaccidents fatal199590106816199690106315199790106916average66.715.710%*66.7=6.76.7 / 20.8 =90%*15.7=14.10.32total % fatal20.8
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	If a distribution has more than one outlier, say
	If a distribution has more than one outlier, say
	0 0 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 47 99 (mean 9.09, SD 22.23)
	we simply apply the winsorization procedure twice, to yield
	1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 47 47 (mean 6.82, SD 13.06)
	at stage one and
	2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 5 (mean 3.18, SD 1.14)
	at stage two. In this example, the two-stage winsorization affects 6 values, rather than just 2. For this reason we have to be careful in repeating this process too often, since it can lead to the antithetical problem of range restriction. 
	In this, study winsorization was limited to no more than 2 stages. For example, in the full data set (N=60) 16 demographic variables were seen to have outliers > 3 SD, and therefore received either a 1- or 2-stage winsorization, depending on what was needed to eliminate these outliers. After treatment, all 16 variables emerged corrected to tolerance.
	A final point worth mentioning is that winsorization has a net result of making our statistical analysis more conservative. This happens precisely because the distributions’ ranges and variances contract during conditioning, and any time variance contracts, p-values generally contract as well. This is not true with purely ordinal statistics, because these calculate their value based on nothing more than rank order. But both chi-square and logistic regression do not fall into that category. While logistic re
	-

	Correction for Familywise Error. Another important issue is the one of correcting p-values to account for the number of predictors examined. Most statisticians recommend some sort of correction for experimentwise Type I error (unwarranted rejection of the null hypothesis). Otherwise, if we do many tests, odds are that some will be “significant” simply by chance.
	However, we consciously chose to deviate from that standard procedure because, in an exploratory study such as this, such rigor, while admirable in one sense, would most certainly have the net result of too much Type II error, that is, failure to detect a true effect where there was one. And, while the danger of inflated experimentwise Type I error was fully appreciated, we also felt it made more sense to report low p-values where found, because these really do represent the best guess we have regarding eff
	The ideal way to resolve the problem, of course, is to run Monte Carlo simulations to get estimates for mean predictivities and Rs, given specific parameters of specific models. This was done in Part II of this report. Another accepted approach is to replicate studies or parts of studies, using different participants. That will be done in follow-up studies, whenever possible.
	2



	APPENDIX F
	APPENDIX F
	APPENDIX F
	Brief Description of Logistic Regression
	Logistic regression is a statistical technique specially constructed for use with discrete dependent variables, for example, Takeoff versus No Takeoff. It is a very useful technique, but it is also extremely easy to miscode, misunderstand, and misinterpret. The best way to understand it is through a combination of mathematics and example. 
	-

	Regression is the search for factors that predict other factors. In this experiment, we wanted to predict the likelihood that an average pilot would take off into known marginal weather, given the added influence of financial incentive.  Three of our predictive factors (Visibility, Cloud Ceiling, and Financial Incentive) were under experimental control; the rest reflected either demographic or personality characteristics of each individual pilot.
	Logistic regression uses an equation to predict the outcome of an event, in this case Takeoff versus No Takeoff (Dreyszig, 1972; Norušis, 1999; SPSS, 2004). This equation is
	  (1)
	Figure

	where e is the natural log (approximately 2.718), B (beta-sub-zero) represents a constant, and B is the corresponding beta weight for the ith predictor, X score. Varying the values of the exponent of e produces a distinctive sigmoid (S-shaped) curve capable of representing probability of takeoff
	0
	i
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	Figure F1. Sample plot of the sigmoid function y=1/(1+ e), showing how the overall value of the prediction equation lies between zero and one. In our case, this represents the probability of a pilot taking off, 0-1 (0-100% chance), given some particular combination of predictor scores X through X. When a given pilot’s calculated probability exceeds an predetermined cutoff level (for example, 0.5), we will predict “Takeoff,” otherwise we will predict “No Takeoff.”
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	Logistic regression has two very attractive advantages over competing statistics. First, as we mentioned, it allows us to make predictions. Second, it allows us to test statistical interactions between predictors. Equation 2 shows how this is typically implemented, showing the prediction equation with its constant B, one main variable X, plus one interaction term involving three factors B, X, and X. Notice that the interaction term literally involves multiplying together the separate predictors. This is an 
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	  (2)
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	To illustrate this numerically, suppose we tested a model where Xrepresented a pilot’s score of 34 on the Rohrmann Risk Orientation Questionnaire (subscale P), and where X and Xrepresented the interaction of Visibility x Ceiling, 3 (miles) and 1 (feet, in thousands), respectively. In that case, the prediction equation for that individual would be
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	Since .428 is less than the default cutoff value of .500, we would predict that this particular pilot would not take off.
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	When we run the SPSS analysis on the full data set, the program basically goes through a similar process for each individual, computing a set of guesses regarding each pilot’s takeoff. Some guesses will be right, others wrong. Then the beta weights are shifted slightly, the analysis is repeated, and the results compared to the priors. If shifting the betas in that direction produces improvement, the direction of shift is repeated, otherwise it is reversed. After a certain number of iterations, the process h
	When we run the SPSS analysis on the full data set, the program basically goes through a similar process for each individual, computing a set of guesses regarding each pilot’s takeoff. Some guesses will be right, others wrong. Then the beta weights are shifted slightly, the analysis is repeated, and the results compared to the priors. If shifting the betas in that direction produces improvement, the direction of shift is repeated, otherwise it is reversed. After a certain number of iterations, the process h
	When we run the SPSS analysis on the full data set, the program basically goes through a similar process for each individual, computing a set of guesses regarding each pilot’s takeoff. Some guesses will be right, others wrong. Then the beta weights are shifted slightly, the analysis is repeated, and the results compared to the priors. If shifting the betas in that direction produces improvement, the direction of shift is repeated, otherwise it is reversed. After a certain number of iterations, the process h
	The most important numbers in this table, as far as we are concerned, are the β weights, and the significance of the Wald statistic (Sig). What the βs here tell us is primarily the direction of the association between a predictor and the outcome. Take ROQ_P, whose β is positive. That tells us that an increase in the ROQ_P score predicts an increase in takeoff probability. If β had been negative, an increase in the ROQ_P score would have predicted a decrease in takeoff probability. The magnitude of β is also
	The Wald significance (Wald p value) works very much like a normal statistical p value. Wald p tells us the reliability of the measurement, estimating the proportion of times we would expect to find a different result, if we repeated the analysis a large number of times. In this particular instance, ROQ_P’s Wald p is .226—too large to be considered reliable.
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	The Constant (β) in this analysis behaves somewhat like other predictors. However, the Constant is sometimes the most difficult term to interpret in a regression model. It can reflect the sample’s base rate for the dependent variable. However, this depends on what other predictors happen to be in the model. If all the other predictors are “Go” predictors (ones with β > 0, where an increase in predictor score reflects an increase in the DV), then the Constant may take on a contrarian role and assume β < 0). 
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	Categorical Variables and the Use of Contrasts
	The analytic usefulness of logistic regression is a big plus. What is not a plus is the meticulous care that has to go into coding the data, setting up the analysis, and interpreting the results. 
	For one thing, the technique is susceptible to outliers, as we mentioned. Misentry of even a single data point can wreck an analysis.
	Another serious difficulty lies in the use of categorical predictors. Although logistic regression is technically capable of handling both categorical and continuous variables, special care needs to be taken when using categoricals. As long as all variables are continuous, either ordinal or ratio-scale, no special care needs to be taken. But categoricals are different. This is because the program takes categoricals coded as letters and converts them internally into zeros and ones. For example, we had two ex
	To drive this idea home, let us take this example further. If, during the analysis, we fail to specify the variable EXPTR as categorical (which requires bringing up a dialog box and making some adjustments), then we could be making a large mistake. That is because SPSS has automatic defaults and will change any letter into a number, whether or not we understand what it is doing. So look at the equation—trying to treat “H” as “nothing” and “B” as “one unit of something” makes sense only in a very limited con
	-
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	teraction. What the mathematics actually does is eliminate the effect of ALL the predictor scores in that interaction term whenever it calculates a data point involving “H,” because it multiplies the other variables in that interaction term by zero for that data point. And this is something we might not have intended to do exactly that way. This is the way we do contrasts, but the point is that the program can be doing a contrast we do not know it is doing if we do not understand exactly what is happening m
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	teraction. What the mathematics actually does is eliminate the effect of ALL the predictor scores in that interaction term whenever it calculates a data point involving “H,” because it multiplies the other variables in that interaction term by zero for that data point. And this is something we might not have intended to do exactly that way. This is the way we do contrasts, but the point is that the program can be doing a contrast we do not know it is doing if we do not understand exactly what is happening m
	Looking at some actual SPSS output will make this a little clearer. Below is some output for the simple model EXPTR + Constant. In the first case, “H” was set to internally code as “1” and “B” as “0.” In the second case, those codes were reversed.
	You can see that the statistical significance (Sig.) of EXPTR does not change, and that this particular variable did not produce a reliable effect (.593). The betas for EXPTR are the same, just with opposite sign. This is simply because we are logically testing one thing “A” against another thing “not A” and, because there are only two things, so “not A” has no degrees of freedom. But, as we would expect from the math and the iterative computational algorithm we talked about, the constants turn out to be di
	Things get even more interesting when it comes to interactions involving more than one categorical variable. The essential logic remains the same, however: a) contrasts focus on whatever happens to be coded “1,” and b) interactions go to zero whenever any single term in them becomes zero. The bottom line is that we cannot simply mindlessly run SPSS and hope to understand the data.
	Problems Associated With Logistic Regression
	Like all statistics, logistic regression is not a perfect technique (Tabachnick & Fidell, 2000). Some of its weaknesses include
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	1.Correlation does not imply causation. All regression techniques do is to establish a mathematical relation between the presence/absence of one thing and the presence/absence of another. But such correlation does not necessarily mean, for instance, that Factor A causes Factor B. The classic counterexample is the case where Factor A and Factor B are both caused by Factor C. In that case, A and B still show correlation, but there is no causation whatsoever between A and B.
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	2.Outliers can greatly skew models and parameter estimates. We demonstrated this clearly in Appendix E. Fortunately, this problem was easily overcome by winsorizing the data.
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	2.Outliers can greatly skew models and parameter estimates. We demonstrated this clearly in Appendix E. Fortunately, this problem was easily overcome by winsorizing the data.
	3.Independence of samples is assumed. Logistic regression is basically a between-subjects technique, not for repeated measures gathered over time. That was not a factor in this study, however.
	4.Absence of multicollinearity is assumed. If predictors are highly correlated, they are probably measuring the same factor, and will not contribute much, if anything additional to a model, other than wrongly inflated significance. Fortunately, the models we present did not pose this problem (see Appendix G for the intercorrelation matrices).
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	5.The ratio of cases to model predictors is important. A common rule of thumb, seen in many textbooks, is that a model should contain no more than one predictor per 10 cases (e.g., per 10 pilots). If a constant is used, this should be counted as one predictor However, we noticed an ancillary problem during this analysis, namely
	6.The case-to-predictor ratio issue extends to the number of predictors measured  analysis is commenced. This is discussed in greater depth below, and in the Part II report.
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	Problems Associated With Too Many Predictors in Forward Stepwise Logistic Regression
	At some point, we had the intuition that simply trying to examine too many predictors in our primary technique of forward stepwise regression could introduce a combinatorial problem. That theoretical problem is easiest illustrated using our actual situation. We started with 83 candidate predictors, some of which were eventually eliminated due to reasons such as having missing values or being discrete (which often led to unwieldy combinations of contrasts). So, in the end, we looked at roughly 60 predictors.
	Now, consider the following deductive logic: Suppose you were trying to model some data taken from 30 pilots, upon whom you had 60 measurements (predictors) each. This would correspond to, say, our Low Financial Incentive group. Then the rule of thumb we mentioned above in Point 5 suggests that all such models should have no more than 30/10 = 3 predictors. So far, so good.
	The problem comes when we consider random numbers. Suppose every one of our predictors was simply “noise,” taken randomly from a Gaussian (normal, bell-shaped) distribution of numbers.  Given that the logistic regression prediction equation is basically
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	notice how the exponent term –((β +) βX...) is really a sum. It will be the sum of our predictors (each weighted). That means that, whatever the actual numbers are for each pilot’s predictor scores, we are going to weight them, then add them up to form a total, which will then be plugged into Eq. 1. So what are the chances that, , SPSS will ultimately end up finding the precise set of β weights such that the Equation 1 turns out greater than 0.5 for pilots who subsequently took off, versus a predicted score
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	Shockingly, the answer is that it is highly likely. We verified this by running Monte Carlo simulations, a standard technique in statistics. Using normal random number generation with µ (mu, mean) of 5 and σ (sigma, standard deviation) of 1, we were easily able to duplicate results such as the following:
	This illustrates that SPSS essentially “made sense out of nonsense.” It summed the three random pseudo-predictor scores for each pilot, shown by the three jagged curves, multiplying each score by the β weights it derived, inserted them into Equation 1 and came up with the much-more regular solid “Prediction Equation” line. Notice how closely that matched the thick, dashed “Takeoff” line representing a dependent variable score of 1 for a takeoff and 0 for a non-takeoff. The three points where those two curve


	Why is this? Well, look at it from the model’s point of view. In forward stepwise regression, the software first chooses one predictor to enter into the model, then a second, a third, and so forth. With 60 predictors, it has 60 candidates for the first choice, 59 for the second, 58 for the third, and so on. Thus, in a three-single predictor model, there are 60*59*58/(3*2*1) = 34,220 possible combinations, not even counting interactions. What is happening is that, given such a huge number of combinations, at
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	We did 100 Monte Carlo simulations for each of our low- and high-incentive groups, with and without a constant in the model. While this was well under the usual standard of 1000-10000 or so simulations per condition, doing each simulation was quite tedious, and these 400 runs did have sufficient reliability to illustrate our basic points.
	Here we see that the proportion of takeoffs matters. Noise models with a proportion of takeoffs close to .5 show lower predictivity and Nagelkerke R than ones with a proportion of takeoff equal to .3. But, overall, predictivities were still in the 70-90% range, and Rs in the 40-70% range for these random-number models.
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	Evaluation of the Meaningfulness of Our Data
	So how reliable were the conclusions for this Part I report? 
	The method used to derive these estimates is detailed in the companion report Pilot willingness to take off into marginal weather, Part II: Antecedent overfitting with forward stepwise logistic regression.
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	To summarize, the .95 confidence intervals around the predicted means (CI .95) imply that any model exceeding these estimates for predictivity and R is highly likely to be a better-than-chance model. Confidence intervals are a standard approach used in many statistics.
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	The full data set and high incentive models derived from real pilots’ data in the current study did not differ significantly from what could be expected from random number simulations. That is why we limited our primary observations to high-level conclusions and the Low Incentive data. The real-pilots’ low-incentive 85.7% predictivity did exceed the random-generated Monte Carlo mean of 80.4%, although it did not top the estimate of 89% for the .95 CI. Their Nagelkerke R of .52 considerably bested the Monte 
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	As said previously, for the purposes of a preliminary report such as this, it is often wiser to be somewhat relaxed in reporting results than we would be later on in the research process. This is because of the Type I-Type II error tradeoff, that is, where excessive stringency in setting significance levels results in a lower number of false positive results but strictly at the cost of a higher number of missed results. In other words, at first the strategy involves going for breadth of findings. The small 
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	Pearson Rs, variables with significance p < .0001 (equivalent to .44 ≤ R ≤ .61) whose explanation is not obvious simply because they are correlated by their very nature (e.g. the various measures calculated from BART). The upshot here is that a) Each of these correlations is perfectly logical, and; b) Even this small number of correlations involves less than half the variance. That means that each instrument presumably measured different factors for the most fact, which was as it should be.
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	APPENDIX H
	Predictor significances for the full data set (N=60), showing the reliability (expressed by the Wald p-value) of individual-predictor models (plus Constant) in logistic regression analysis with Takeoff as the dependent variable. Here each model included just one predictor, plus a constant. Subject ID is an identifier, not a predictor, and Latency is a descriptor, hence these lack p-values. 
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	These predictors generally show very low reliability, with the exception of those highlighted in gray. However, of those, we should exclude all but incent and ventur from further consideration, due to high numbers of missing values (MV) for the other three. Note that the reference category for lic_type was “Private” (N=39), so p expresses the analysis “Private versus All Other Categories.” No individual category had a p of < .12 in any case.
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	Predictor significances for the Low-Incentive data set (N=30), showing the reliability (Wald p-value) of individual-predictor models (plus Constant) in logistic regression analysis with Takeoff as the dependent variable. The reference category on type_lic is “Private,” on simmotsb it is “Didn’t matter.” Keep in mind that the SPSS reference category is the one being weighted “0” in the logistic regression prediction equation.
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